Integrated Direct Reduction Electric Arc Furnace (with and without CCS)

Contents

Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples

Overview

In Macro, the Integrated Direct Reduction–Electric Arc Furnace (DR-EAF) pathway represents integrated steelmaking facilities that combine direct reduction units with electric arc furnaces. In this configuration, iron ore is first reduced in a direct reduction reactor using natural gas or hydrogen as the reductant to produce hot direct reduced iron (hDRI), which is then melted in electric arc furnaces to produce crude steel. These assets are specified via input files in JSON or CSV format, located in the assets directory, and are typically named with descriptive identifiers such as integrated_hydrogen_direct_reduction_electric_arc_furnace.json or integrated_naturalgas_direct_reduction_electric_arc_furnace_ccs.csv.

Asset Structure

A DR-EAF plant (with and without CCS) is made of the following components:

  • 1 Transformation component, representing the DR-EAF (with and without CCS).
  • 8 Edge components:
    • 1 incoming IronOre Edge, representing the iron ore supply in the form of the IronOreDR subcommodity. (Macro distinguishes between two iron ore sub-commodities: IronOreBF, a blast-furnace-grade ore with approximately 65% iron content, and IronOreDR, a higher-purity ore (above ~67% iron) suitable for use in direct-reduction furnaces.)
    • 1 incoming Reductant Edge, representing reductant supply, which can be natural gas or hydrogen.
    • 1 incoming Electricity Edge, representing electricity supply.
    • 1 incoming CarbonSource Edge, representing the carbon source supply. (Applicable only when hydrogen is used as the reductant and not relevant for natural gas variants. The resulting DRI is carbon-free, and a carbon source—such as metallurgical coal, charcoal, or other carbon materials—is added to adjust the steel’s carbon content, minimize iron oxide losses, and supply additional chemical energy.).
    • 1 outgoing CrudeSteel Edge, representing the crude steel production.
    • 1 outgoing CO2 Edge, representing the CO2 that is emitted.
    • 1 outgoing CO2Captured Edge, representing the CO2 that is captured (only if CCS is present).

Here is a graphical representation of a natural gas-based DR-EAF asset without CCS:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#D1EBDE' }}}%% flowchart BT subgraph NG-DR-EAF direction BT A1(("**IronOre**")) e1@-->B{{"**NG-DR-EAF**"}} A2(("**NaturalGas**")) e2@-->B{{"**NG-DR-EAF**"}} A3(("**Electricity**")) e3@-->B{{"**NG-DR-EAF**"}} B{{"**NG-DR-EAF**"}} e4@-->C1(("**CrudeSteel**")) B{{"**NG-DR-EAF**"}} e5@-->C2(("**CO2**")) e1@{ animate: true } e2@{ animate: true } e3@{ animate: true } e4@{ animate: true } e5@{ animate: true } end style A1 font-size:15px,r:45px,fill:#A52A2A,stroke:black,color:black,stroke-dasharray: 3,5; style A2 font-size:15px,r:45px,fill:#005F6A,stroke:black,color:black,stroke-dasharray: 3,5; style A3 font-size:15px,r:45px,fill:#FFD700,stroke:black,color:black,stroke-dasharray: 3,5; style B fill:white,stroke:black,color:black; style C1 font-size:15px,r:45px,fill:#566573,stroke:black,color:black,stroke-dasharray: 3,5; style C2 font-size:15px,r:45px,fill:lightgray,stroke:black,color:black,stroke-dasharray: 3,5; linkStyle 0 stroke:#A52A2A, stroke-width: 2px; linkStyle 1 stroke:#005F6A, stroke-width: 2px; linkStyle 2 stroke:#FFD700, stroke-width:2px; linkStyle 3 stroke:#566573, stroke-width: 2px; linkStyle 3 stroke:#696969, color:lightgray, stroke-width: 2px;

Flow Equations

The integrated DR-EAF asset follows these stoichiometric relationships:

\[\begin{aligned} \phi_{ironore} &= \phi_{crudesteel} \cdot \epsilon_{ironore\_consumption} \\ \phi_{fuel} &= \phi_{crudesteel} \cdot \epsilon_{fuel\_consumption} \\ \phi_{elec} &= \phi_{crudesteel} \cdot \epsilon_{elec\_consumption} \\ \phi_{carbonsource} &= \phi_{crudesteel} \cdot \epsilon_{carbonsource\_consumption} \quad \text{(non-zero when hydrogen is the reductant, not relevant for natural gas variants)} \\ \phi_{co2} &= \phi_{crudesteel} \cdot \epsilon_{emission\_rate} \\ \phi_{co2\_captured} &= \phi_{crudesteel} \cdot \epsilon_{co2\_capture\_rate} \quad \text{(if CCS)} \\ \end{aligned}\]

Where:

  • $\phi$ represents the flow of each commodity.
  • $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.

Input File (Standard Format)

The easiest way to include an integrated DirectReductionElectricArcFurnace asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.

your_case/
├── assets/
│   ├── integrated_naturalgas_direct_reduction_electric_arc_furnace.json    # or integrated_naturalgas_direct_reduction_electric_arc_furnace.csv
│   ├── other_assets.json
│   └── ...
├── system/
├── settings/
└── ...

This file can either be created manually or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model. An example of an input JSON file is shown in the Examples section.

The following tables outline the attributes that can be set for a DirectReductionElectricArcFurnace.

Transform Attributes

Essential Attributes

FieldTypeDescription
TypeStringAsset type identifier: "DirectReductionElectricArcFurnace"
idStringUnique identifier for the asset instance
locationStringGeographic location/node identifier
timedataStringTime resolution for the time series data linked to the transformation

Conversion Process Parameters

FieldTypeDescriptionUnitsDefault
ironore_consumptionFloat64iron ore consumption per ton of crude steel output$t_{ironore}/t_{crudesteel}$0.0
reductant_consumptionFloat64reductant consumption per ton of crude steel output$MWh/t_{crudesteel}$0.0
electricity_consumptionFloat64electricity consumption per ton of crude steel output$MWh_{elec}/t_{crudesteel}$0.0
carbonsource_consumptionFloat64carbon source (i.e., metallurgical coal, charcoal, etc.) consumption per ton of crude steel output
$t/t_{crudesteel}$0.0
emission_rateFloat64CO2 emissions per ton of crude steel output$t_{CO2}/t_{crudesteel}$0.0
capture_rateFloat64captured CO2 emissions per ton of crude steel output, only relevant for CCS variant.$t_{CO2}/t_{crudesteel}$0.0

General Attributes

FieldTypeValuesDefaultDescription
typeStringAny Macro commodity type matching the commodity of the edgeRequiredCommodity of the edge. E.g. "Electricity".
start_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the starting vertex of the edge. The node must be present in the nodes.json file. E.g. "elec_node_1".
end_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the ending vertex of the edge. The node must be present in the nodes.json file. E.g. "crudesteel_node_1".
availabilityDictAvailability file path and headerEmptyPath to the availability file and column name for the availability time series to link to the edge. E.g. {"timeseries": {"path": "assets/availability.csv", "header": "DirectReductionElectricArcFurnace"}}.
has_capacityBoolBoolfalseWhether capacity variables are created for the edge.
integer_decisionsBoolBoolfalseWhether capacity variables are integers.
unidirectionalBoolBoolfalseWhether the edge is unidirectional.
Asset expansion

As a modeling decision, only the CrudeSteel is allowed to expand. Therefore, both the has_capacity and constraints attributes can only be set for that edge. For all other edges, these attributes are pre-set to false and an empty list, respectively, to ensure the correct modeling of the asset.

Directionality

The unidirectional attribute is set to true for all the edges.

Investment Parameters

FieldTypeDescriptionUnitsDefault
can_retireBooleanWhether capacity can be retired-true
can_expandBooleanWhether capacity can be expanded-true
existing_capacityFloat64Initial installed capacitytCrudeSteel/hr0.0

Economic Parameters

FieldTypeDescriptionUnitsDefault
investment_costFloat64CAPEX per unit capacity$/tCrudeSteel/hr0.0
fixed_om_costFloat64Fixed O&M costs$/tCrudeSteel/hr0.0
variable_om_costFloat64Variable O&M costs$/tCrudeSteel0.0

Constraints Configuration

DirectReductionElectricArcFurnace assets can have different constraints applied to them, and the user can configure them using the following fields:

FieldTypeDescription
transform_constraintsDict{String,Bool}List of constraints applied to the transformation component.
output_constraintsDict{String,Bool}List of constraints applied to the output edge component.

For example, if the user wants to apply the BalanceConstraint to the transformation component and the MaxCapacityConstraint to the output edge, the constraints fields should be set as follows:

{
    "transform_constraints": {
        "BalanceConstraint": true
    },
    "edges":{
        "crudesteel_edge": {
            "constraints": {
                "MaxCapacityConstraint": true
            }
        }
}

Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of a DirectReductionElectricArcFurnace asset.

Default constraints

To simplify the input file and the asset configuration, the following constraints are applied to the DrEaf asset by default:

Types - Asset Structure

The DirectReductionElectricArcFurnace asset is defined as follows:

struct DirectReductionElectricArcFurnace{T1 <: Commodity,T2 <: Commodity} <: AbstractAsset
    id::AssetId
    dreaf_transform::Transformation
    crudesteel_edge::Edge{CrudeSteel}
    reductant_edge::Edge{T1} # natural gas or hydrogen
    elec_edge::Edge{Electricity}
    carbonsource_edge::Edge{T2} # coal, charcoal, etc. 
    ironore_edge::Edge{<:IronOre}
    co2_edge::Edge{CO2}
end

Here, two of the asset edges are parameterized. T1 denotes the reductant, which may be either natural gas or hydrogen, while T2 denotes the carbon source, which may be coal, charcoal, or other carbon materials.

Constructors

Factory constructor

make(asset_type::Type{DirectReductionElectricArcFurnace}, data::AbstractDict{Symbol,Any}, system::System)
FieldTypeDescription
asset_typeType{DirectReductionElectricArcFurnace}Macro type of the asset
dataAbstractDict{Symbol,Any}Dictionary containing the input data for the asset
systemSystemSystem to which the asset belongs

Stochiometry balance data

dreaf_transform.balance_data = Dict(
    :ironore_consumption=> Dict(
        crudesteel_edge.id => get(transform_data, :ironore_consumption, 0.0),
        ironore_edge.id => 1.0
    ),
    :electricity_consumption => Dict(
        crudesteel_edge.id => get(transform_data, :electricity_consumption, 0.0),
        elec_edge.id => 1.0
    ),
    :reductant_consumption => Dict(
        crudesteel_edge.id => get(transform_data, :reductant_consumption, 0.0),
        reductant_edge.id => 1.0
    ),
    :carbonsource_consumption => Dict(
        crudesteel_edge.id => get(transform_data, :carbonsource_consumption, 0.0),
        carbonsource_edge.id => 1.0
    ),
    :emissions => Dict(
        crudesteel_edge.id => get(transform_data, :emission_rate, 0.0),
        co2_edge.id => -1.0, 
    ),
)
Dictionary keys must match

In the code above, each get function call looks up a parameter in the transform_data dictionary using a symbolic key such as :reductant_consumption or :emission_rate. These keys must exactly match the corresponding field names in your input asset .json or .csv files. Mismatched key names between the constructor file and the asset input will result in missing or incorrect parameter values (defaulting to 0.0).

Examples

This example illustrates a basic DirectReductionElectricArcFurnace configuration using natural gas as a reductant and metallurgical coal as a carbon source in JSON format, featuring standard parameters in a three-zone case.

{
    "IntegratedNaturalGasDirectReductionElectricArcFurnace": [
        {
            "type": "DirectReductionElectricArcFurnace",
            "global_data":{
                "nodes": {},
                "transforms": {
                    "timedata": "NaturalGas",
                    "constraints": {
                            "BalanceConstraint": true
                    }
                },
                "edges":{
                    "crudesteel_edge": {
                        "commodity": "CrudeSteel",
                        "unidirectional": true,
                        "has_capacity": true,
                        "can_retire": true,
                        "can_expand": true,
                        "constraints": {
                            "CapacityConstraint": true
                        }
                    },
                    "reductant_edge": {
                        "commodity": "NaturalGas",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "ironore_edge":{
                        "commodity": "IronOreDR",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "elec_edge":{
                        "commodity": "Electricity",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "carbonsource_edge": {
                        "commodity": "MetCoal",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "co2_edge": {
                        "commodity": "CO2",
                        "unidirectional": true,
                        "has_capacity": false,
                        "end_vertex": "co2_sink_steel"
                    }
                }
            },
            "instance_data":[
                {
                    "id": "SE_natural_gas_dr_eaf",
                    "transforms":{
                        "ironore_consumption": 1.59,
                        "reductant_consumption": 3.89,
                        "electricity_consumption": 0.6,
                        "emission_rate": 0.85
                    },
                    "edges":{
                            "crudesteel_edge": {
                                "end_vertex": "crudesteel_SE",
                                "existing_capacity": 0.0,
                                "investment_cost": 6973921,
                                "fixed_om_cost": 139478,
                                "variable_om_cost": 135
                            },
                            "reductant_edge": {
                                "start_vertex": "natgas_SE"
                            },
                            "elec_edge":{
                                "start_vertex": "elec_SE"
                            },
                            "ironore_edge":{
                                "start_vertex": "ironoredr_source"
                            },
                            "carbonsource_edge": {
                                "start_vertex": "metcoal_source"
                            }
                        }
                },
                {
                    "id": "MIDAT_natural_gas_dr_eaf",
                    "transforms":{
                        "ironore_consumption": 1.59,
                        "reductant_consumption": 3.89,
                        "electricity_consumption": 0.6,
                        "emission_rate": 0.85
                    },
                    "edges":{
                            "crudesteel_edge": {
                                "end_vertex": "crudesteel_MIDAT",
                                "existing_capacity": 0.0,
                                "investment_cost": 6973921,
                                "fixed_om_cost": 139478,
                                "variable_om_cost": 135
                            },
                            "reductant_edge": {
                                "start_vertex": "natgas_MIDAT"
                            },
                            "elec_edge":{
                                "start_vertex": "elec_MIDAT"
                            },
                            "ironore_edge":{
                                "start_vertex": "ironoredr_source"
                            },
                            "carbonsource_edge": {
                                "start_vertex": "metcoal_source"
                            }
                        }
                },
                {
                    "id": "NE_natural_gas_dr_eaf",
                    "transforms":{
                        "ironore_consumption": 1.59,
                        "reductant_consumption": 3.89,
                        "electricity_consumption": 0.6,
                        "emission_rate": 0.85
                    },
                    "edges":{
                            "crudesteel_edge": {
                                "end_vertex": "crudesteel_NE",
                                "existing_capacity": 0.0,
                                "investment_cost": 6973921,
                                "fixed_om_cost": 139478,
                                "variable_om_cost": 135
                            },
                            "reductant_edge": {
                                "start_vertex": "natgas_NE"
                            },
                            "elec_edge":{
                                "start_vertex": "elec_NE"
                            },
                            "ironore_edge":{
                                "start_vertex": "ironoredr_source"
                            },
                            "carbonsource_edge": {
                                "start_vertex": "metcoal_source"
                            }
                        }
                }

            ]
        }
    ]
}

See Also

  • Edges - Components that connect Vertices and carry flows
  • Transformations - Processes that transform flows of several Commodities
  • Nodes - Network nodes that allow for import and export of commodities
  • Vertices - Network nodes that edges connect
  • Assets - Higher-level components made from edges, nodes, storage, and transformations
  • Commodities - Types of resources stored by Commodities
  • Time Data - Temporal modeling framework
  • Constraints - Additional constraints for Storage and other components