Thermal Power Plant (with and without CCS)

Contents

Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples | Best Practices | Input File (Advanced Format)

Overview

Thermal power plant assets in Macro represent electricity generation technologies that convert fuel into electricity through combustion or other thermal processes. These assets can include conventional thermal plants (coal, natural gas) and those with carbon capture and storage (CCS) capabilities. They are defined using either JSON or CSV input files placed in the assets directory, typically named with descriptive identifiers like natgas_power.json, nuclear_power.json, or coal_power.json.

CCS version

Macro supports both the standard thermal power plant asset and a CCS version. The only difference between the two is the addition of a CO₂ captured edge.

Asset Structure

A thermal power plant asset consists of five main components:

  1. Transformation Component: Balances the fuel and electricity flows
  2. Fuel Edge: Represents the fuel supply to the plant
  3. Electricity Edge: Represents the electricity production (can have unit commitment operations)
  4. CO₂ Edge: Represents the CO₂ emissions
  5. CO₂ Captured Edge: Represents the CO₂ captured (only if CCS is present)

Here is a graphical representation of the thermal power plant asset:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#D1EBDE' }}}%% flowchart LR subgraph ThermalPower direction BT A((Fuel)) e1@ --> B{{..}} B e2@ --> C((Electricity)) B e3@ --> D((CO₂ Emitted)) B e4@ --> E((CO₂ Captured)) e1@{animate: true} e2@{animate: true} e3@{animate: true} e4@{animate: true} end style A r:55px,fill:#005F6A,stroke:black,color:white,stroke-dasharray: 3,5; style B r:55px,fill:black,stroke:black,color:black,stroke-dasharray: 3,5; style C font-size:19px,r:55px,fill:#FFD700,stroke:black,color:black,stroke-dasharray: 3,5; style D font-size:17px,r:55px,fill:lightgray,stroke:black,color:black,stroke-dasharray: 3,5; style E font-size:15px,r:55px,fill:lightgray,stroke:black,color:black,stroke-dasharray: 3,5; linkStyle 0 stroke:#005F6A, stroke-width: 2px; linkStyle 1 stroke:#FFD700, stroke-width: 2px; linkStyle 2 stroke:lightgray, stroke-width: 2px; linkStyle 3 stroke:lightgray, stroke-width: 2px;

Flow Equations

The thermal power plant asset follows these stoichiometric relationships:

\[\begin{aligned} \phi_{fuel} &= \phi_{elec} \cdot \epsilon_{fuel\_consumption} \\ \phi_{co2} &= \phi_{fuel} \cdot \epsilon_{emission\_rate} \\ \phi_{co2\_captured} &= \phi_{fuel} \cdot \epsilon_{co2\_capture\_rate} \quad \text{(if CCS)} \\ \end{aligned}\]

Where:

  • $\phi$ represents the flow of each commodity
  • $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.

Input File (Standard Format)

Techno-Economic Analysis

Techno-economic analysis background is recommended for updating or adding conversion process parameters. For users not familiar with TEA, they can refer to this guide.

The easiest way to include a thermal power plant asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.

your_case/
├── assets/
│   ├── thermal_power.json    # or thermal_power.csv
│   ├── other_assets.json
│   └── ...
├── system/
├── settings/
└── ...

This file can either be created manually, or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model.

The following is an example of a thermal power plant asset input file with unit commitment enabled and burning natural gas:

{
    "NaturalGasPowerCCS": [
        {
            "type": "ThermalPowerCCS",
            "instance_data": [
                {
                    "id": "SE_naturalgas_ccccsavgcf_conservative_0",
                    "location": "SE",
                    "fuel_commodity": "NaturalGas",
                    "uc": true,
                    "co2_sink": "co2_sink",
                    "elec_constraints": {
                        "MinFlowConstraint": true,
                        "MinUpTimeConstraint": true,
                        "MinDownTimeConstraint": true
                    },
                    "capacity_size": 377,
                    "fuel_consumption": 2.09809579,
                    "emission_rate": 0.018104824,
                    "capture_rate": 0.162943412,
                    "investment_cost": 105122.0711,
                    "fixed_om_cost": 47800,
                    "variable_om_cost": 3.76,
                    "startup_cost": 97,
                    "startup_fuel_consumption": 0.058614214,
                    "min_up_time": 4,
                    "min_down_time": 4,
                    "ramp_up_fraction": 1,
                    "ramp_down_fraction": 1,
                    "min_flow_fraction": 0.5
                }
            ]
        }
    ]
}
Global Data vs Instance Data

When working with JSON input files, the global_data field can be used to group data that is common to all instances of the same asset type. This is useful for setting constraints that are common to all instances of the same asset type and avoid repeating the same data for each instance. See the Examples section below for an example.

The following tables outline the attributes that can be set for a thermal power plant asset.

Essential Attributes

FieldTypeDescription
TypeStringAsset type identifier: "ThermalPower" or "ThermalPowerCCS"
idStringUnique identifier for the thermal power plant instance
locationStringGeographic location/node identifier
fuel_commodityStringFuel commodity identifier
ucBooleanWhether unit commitment is enabled (default: false)
timedataStringTime resolution for time series data (default: "Electricity")
co2_sinkStringCO₂ sink identifier
fuel_start_vertexStringFuel start vertex identifier. This is not required if the fuel commodity is present in the location.

Conversion Process Parameters

The following set of parameters control the conversion process and stoichiometry of the thermal power plant asset (see Flow Equations for more details).

FieldTypeDescriptionUnitsDefault
fuel_consumptionFloat64Fuel consumption rate$MWh_{fuel}/MWh_{elec}$1.0
emission_rateFloat64CO₂ emission rate$t_{CO₂}/MWh_{fuel}$0.0
capture_rateFloat64CO₂ capture rate (CCS only)$t_{CO₂}/MWh_{fuel}$1.0

Constraints Configuration

Thermal power plant assets can have different constraints applied to them, and the user can configure them using the following fields:

FieldTypeDescription
transform_constraintsDict{String,Bool}List of constraints applied to the transformation component.
elec_constraintsDict{String,Bool}List of constraints applied to the electricity edge.
fuel_constraintsDict{String,Bool}List of constraints applied to the fuel edge.
co2_constraintsDict{String,Bool}List of constraints applied to the CO₂ edge.
co2_captured_constraintsDict{String,Bool}List of constraints applied to the CO₂ captured edge (CCS only).

For example, if the user wants to apply the BalanceConstraint to the transformation component and the CapacityConstraint to the electricity edge, the constraints fields should be set as follows:

{
    "transform_constraints": {
        "BalanceConstraint": true
    },
    "elec_constraints": {
        "CapacityConstraint": true
    }
}

Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of a thermal power plant asset.

Default constraints

To simplify the input file and the asset configuration, the following constraints are applied to the thermal power plant asset by default:

Unit commitment constraints (when uc is set to true):

Investment Parameters

FieldTypeDescriptionUnitsDefault
can_retireBooleanWhether capacity can be retired-true
can_expandBooleanWhether capacity can be expanded-true
existing_capacityFloat64Initial installed capacityMW0.0
capacity_sizeFloat64Unit size for capacity decisions-1.0

Additional Investment Parameters

Maximum and minimum capacity constraints

If MaxCapacityConstraint or MinCapacityConstraint are added to the constraints dictionary for the electricity edge, the following parameters are used by Macro:

FieldTypeDescriptionUnitsDefault
max_capacityFloat64Maximum allowed capacityMWInf
min_capacityFloat64Minimum allowed capacityMW0.0

Economic Parameters

FieldTypeDescriptionUnitsDefault
investment_costFloat64CAPEX per unit capacity$/MW0.0
annualized_investment_costUnion{Nothing,Float64}Annualized CAPEX$/MW/yrcalculated
fixed_om_costFloat64Fixed O&M costs$/MW/yr0.0
variable_om_costFloat64Variable O&M costs$/MWh0.0
startup_costFloat64Cost per MW of capacity to start a generator$/MW per start0.0
waccFloat64Weighted average cost of capitalfraction0.0
lifetimeIntAsset lifetime in yearsyears1
capital_recovery_periodIntInvestment recovery periodyears1
retirement_periodIntRetirement periodyears0

Operational Parameters

FieldTypeDescriptionUnitsDefault
availabilityDictAvailability file path and header-Empty

Additional Operational Parameters

Unit commitment parameters (when uc is set to true)

FieldTypeDescriptionUnitsDefault
startup_fuel_consumptionFloat64Fuel consumption per unit electricity to start the plant$MWh_{fuel}/MWh_{elec}$0.0

Minimum flow constraint

If MinFlowConstraint is added to the constraints dictionary for the electricity edge, the following parameter is used:

FieldTypeDescriptionUnitsDefault
min_flow_fractionFloat64Minimum flow as fraction of capacityfraction0.0

Ramping limit constraint

If RampingLimitConstraint is added to the constraints dictionary for the electricity edge, the following parameters are used:

FieldTypeDescriptionUnitsDefault
ramp_up_fractionFloat64Maximum increase in flow between timestepsfraction1.0
ramp_down_fractionFloat64Maximum decrease in flow between timestepsfraction1.0

Minimum up and down time constraints

If MinUpTimeConstraint or MinDownTimeConstraint are added to the constraints dictionary for the electricity edge, the following parameters are used:

FieldTypeDescriptionUnitsDefault
min_up_timeInt64Minimum time the plant must remain committedhours0
min_down_timeInt64Minimum time the plant must remain shutdownhours0

Types - Asset Structure

The ThermalPower and ThermalPowerCCS assets are defined as follows:

struct ThermalPower{T} <: AbstractAsset
    id::AssetId
    thermal_transform::Transformation
    elec_edge::Union{Edge{<:Electricity},EdgeWithUC{<:Electricity}}
    fuel_edge::Edge{<:T}
    co2_edge::Edge{<:CO2}
end

struct ThermalPowerCCS{T} <: AbstractAsset
    id::AssetId
    thermalpowerccs_transform::Transformation
    elec_edge::Union{Edge{<:Electricity},EdgeWithUC{<:Electricity}}
    fuel_edge::Edge{<:T}
    co2_edge::Edge{<:CO2}
    co2_captured_edge::Edge{<:CO2Captured}
end

Constructors

Default constructor

ThermalPower(id::AssetId, thermal_transform::Transformation, elec_edge::Union{Edge{<:Electricity},EdgeWithUC{<:Electricity}}, fuel_edge::Edge{<:Fuel}, co2_edge::Edge{<:CO2})

ThermalPowerCCS(id::AssetId, thermalpowerccs_transform::Transformation, elec_edge::Union{Edge{<:Electricity},EdgeWithUC{<:Electricity}}, fuel_edge::Edge{<:Fuel}, co2_edge::Edge{<:CO2}, co2_captured_edge::Edge{<:CO2Captured})

Factory constructor

make(asset_type::Type{ThermalPower}, data::AbstractDict{Symbol,Any}, system::System)
make(asset_type::Type{ThermalPowerCCS}, data::AbstractDict{Symbol,Any}, system::System)
FieldTypeDescription
asset_typeType{ThermalPower} or Type{ThermalPowerCCS}Macro type of the asset
dataAbstractDict{Symbol,Any}Dictionary containing the input data for the asset
systemSystemSystem to which the asset belongs

Examples

This section contains examples of how to use the thermal power plant asset in a Macro model.

Nuclear Power Plant

This example shows a nuclear power plant with unit commitment enabled and using uranium as fuel. The asset has an existing capacity that is only allowed to be retired. A MinFlowConstraint constraint is applied to the electricity edge with a minimum flow fraction of 0.5. A MinUpTimeConstraint and MinDownTimeConstraint constraint is applied to the electricity edge with a minimum up and down time of 36 hours. A RampingLimitConstraint constraint is applied to the electricity edge with a ramping limit of 0.25. The asset has an availability time series loaded from a CSV file.

JSON Format:

Note that the global_data field is used to set the fields and constraints that are common to all instances of the same asset type.

{
    "NuclearPower": [
        {
            "type": "ThermalPower",
            "instance_data": [
                {
                    "id": "SE_nuclear_1",
                    "location": "SE",
                    "timedata": "Uranium",
                    "fuel_commodity": "Uranium",
                    "fuel_start_vertex": "uranium_source",
                    "co2_sink": "co2_sink",
                    "uc": true,
                    "can_retire": true,
                    "can_expand": false,
                    "existing_capacity": 33632.288,
                    "capacity_size": 1051.009,
                    "elec_constraints": {
                        "MinFlowConstraint": true,
                        "MinUpTimeConstraint": true,
                        "MinDownTimeConstraint": true
                    },
                    "fuel_consumption": 3.064351108,
                    "fixed_om_cost": 199087.824,
                    "variable_om_cost": 2.34,
                    "min_flow_fraction": 0.5,
                    "startup_cost": 1000,
                    "min_up_time": 36,
                    "min_down_time": 36,
                    "ramp_up_fraction": 0.25,
                    "ramp_down_fraction": 0.25,
                    "startup_fuel_consumption": 0.0
                }
            ]
        }
    ]
}

CSV Format:

Typeidlocationtimedatafuel_commodityfuel_start_vertexco2_sinkuccan_retirecan_expandexisting_capacitycapacity_sizeelec_constraints–MinFlowConstraintelec_constraints–MinUpTimeConstraintelec_constraints–MinDownTimeConstraintfuel_consumptionfixed_om_costvariable_om_coststartup_coststartup_fuel_consumptionmin_up_timemin_down_timeramp_up_fractionramp_down_fractionmin_flow_fraction
ThermalPowerSE_nuclear_1SEUraniumUraniumuranium_sourceco2_sinktruetruetrue33632.2881051.009truetruetrue3.064351108199087.8242.3410000.036360.250.250.5

Multiple Natural Gas Fired Combined Cycle Plants in Different Zones with CCS

This example shows three natural gas fired combined cycle plants with unit commitment enabled and using natural gas as fuel. Each asset has an existing capacity that is only allowed to be retired. A MinFlowConstraint constraint is applied to the electricity edge with a minimum flow fraction of 0.444, 0.526, and 0.41. A MinUpTimeConstraint and MinDownTimeConstraint constraint is applied to the electricity edge with a minimum up and down time of 6 hours. A RampingLimitConstraint constraint is applied to the electricity edge with a ramping limit of 0.64. The asset has an availability time series loaded from a CSV file.

JSON Format:

{
    "NaturalGasPower": [
        {
            "type": "ThermalPower",
            "global_data": {
                "timedata": "NaturalGas",
                "fuel_commodity": "NaturalGas",
                "co2_sink": "co2_sink",
                "uc": true,
                "elec_constraints": {
                    "MinFlowConstraint": true,
                    "MinUpTimeConstraint": true,
                    "MinDownTimeConstraint": true
                }
            },
            "instance_data": [
                {
                    "id": "MIDAT_natural_gas_fired_combined_cycle_1",
                    "location": "MIDAT",
                    "emission_rate": 0.181048235160161,
                    "fuel_consumption": 2.249613533,
                    "can_retire": true,
                    "can_expand": false,
                    "existing_capacity": 4026.4,
                    "investment_cost": 0.0,
                    "fixed_om_cost": 16001,
                    "variable_om_cost": 4.415,
                    "capacity_size": 125.825,
                    "startup_cost": 89.34,
                    "startup_fuel_consumption": 0.58614214,
                    "min_up_time": 6,
                    "min_down_time": 6,
                    "ramp_up_fraction": 0.64,
                    "ramp_down_fraction": 0.64,
                    "min_flow_fraction": 0.444
                },
                {
                    "id": "NE_natural_gas_fired_combined_cycle_1",
                    "location": "NE",
                    "emission_rate": 0.181048235160161,
                    "fuel_consumption": 2.511912141,
                    "can_retire": true,
                    "can_expand": false,
                    "existing_capacity": 6119.616,
                    "investment_cost": 0.0,
                    "fixed_om_cost": 16001,
                    "variable_om_cost": 4.415,
                    "capacity_size": 127.492,
                    "startup_cost": 89.34,
                    "startup_fuel_consumption": 0.58614214,
                    "min_up_time": 6,
                    "min_down_time": 6,
                    "ramp_up_fraction": 0.64,
                    "ramp_down_fraction": 0.64,
                    "min_flow_fraction": 0.526
                },
                {
                    "id": "SE_natural_gas_fired_combined_cycle_1",
                    "location": "SE",
                    "emission_rate": 0.181048235160161,
                    "fuel_consumption": 2.132092034,
                    "can_retire": true,
                    "can_expand": false,
                    "existing_capacity": 26218.712,
                    "investment_cost": 0.0,
                    "fixed_om_cost": 9496,
                    "variable_om_cost": 3.504,
                    "capacity_size": 504.206,
                    "startup_cost": 89.34,
                    "startup_fuel_consumption": 0.58614214,
                    "min_up_time": 6,
                    "min_down_time": 6,
                    "ramp_up_fraction": 0.64,
                    "ramp_down_fraction": 0.64,
                    "min_flow_fraction": 0.41
                }
            ]
        }
    ]
}

CSV Format:

Typeidlocationtimedatafuel_commodityco2_sinkuccan_retirecan_expandexisting_capacitycapacity_sizeelec_constraints–MinFlowConstraintelec_constraints–MinUpTimeConstraintelec_constraints–MinDownTimeConstraintfuel_consumptionfixed_om_costvariable_om_coststartup_coststartup_fuel_consumptionmin_up_timemin_down_timeramp_up_fractionramp_down_fractionmin_flow_fraction
ThermalPowerMIDAT_natural_gas_fired_combined_cycle_1MIDATNaturalGasNaturalGasco2_sinktruetruefalse4026.4125.825truetruetrue2.249613533160014.41589.340.58614214660.640.640.444
ThermalPowerNE_natural_gas_fired_combined_cycle_1NENaturalGasNaturalGasco2_sinktruetruefalse6119.616127.492truetruetrue2.511912141160014.41589.340.58614214660.640.640.526
ThermalPowerSE_natural_gas_fired_combined_cycle_1SENaturalGasNaturalGasco2_sinktruetruefalse26218.712504.206truetruetrue2.13209203494963.50489.340.58614214660.640.640.41

Best Practices

  1. Use global data for common parameters: Use the global_data field to set the fields and constraints that are common to all instances of the same asset type.
  2. Set realistic efficiency parameters: Ensure fuel consumption, emission rates, and capture rates are accurate for the technology being modeled
  3. Use meaningful IDs: Choose descriptive identifiers that indicate location and technology type
  4. Consider unit commitment carefully: Enable unit commitment only when detailed operational modeling is needed
  5. Use constraints selectively: Only enable constraints that are necessary for your modeling needs
  6. Validate costs: Ensure investment and O&M costs are in appropriate units and time periods
  7. Test configurations: Start with simple configurations and gradually add complexity
  8. Separate conventional vs CCS plants: Use different asset types for conventional and CCS thermal plants
  9. Set appropriate ramp rates: Consider the actual operational characteristics of the technology

Input File (Advanced Format)

Macro provides an advanced format for defining thermal power plant assets, offering users and modelers detailed control over asset specifications. This format builds upon the standard format and is ideal for those who need more comprehensive customization.

To understand the advanced format, consider the graph representation and the type definition of a thermal power plant asset. The input file mirrors this hierarchical structure.

A thermal power plant asset in Macro is composed of a transformation component, represented by a Transformation object, and multiple edges (fuel, electricity, CO2, and optionally CO2 captured), each represented by an Edge object. The input file for a thermal power plant asset is therefore organized as follows:

{
    "transforms":{
        // ... transformation-specific attributes ...
    },
    "edges":{
        "fuel_edge": {
            // ... fuel_edge-specific attributes ...
        },
        "elec_edge": {
            // ... elec_edge-specific attributes ...
        },
        "co2_edge": {
            // ... co2_edge-specific attributes ...
        },
        "co2_captured_edge": {
            // ... co2_captured_edge-specific attributes, only if CCS is present ...
        }
    }
}

Each top-level key (e.g., "transforms" or "edges") denotes a component type. The second-level keys either specify the attributes of the component (when there is a single instance) or identify the instances of the component when there are multiple instances.

Below is an example of an input file for a thermal power plant asset that sets up multiple thermal plants across different regions:

{
    "NaturalGasPower": [
        {
            "type": "ThermalPower",
            "global_data": {
                "transforms": {
                    "timedata": "NaturalGas",
                    "constraints": {
                        "BalanceConstraint": true
                    }
                },
                "edges": {
                    "elec_edge": {
                        "commodity": "Electricity",
                        "unidirectional": true,
                        "has_capacity": true,
                        "uc": true,
                        "integer_decisions": false,
                        "constraints": {
                            "CapacityConstraint": true,
                            "RampingLimitConstraint": true,
                            "MinFlowConstraint": true,
                            "MinUpTimeConstraint": true,
                            "MinDownTimeConstraint": true
                        }
                    },
                    "fuel_edge": {
                        "commodity": "NaturalGas",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "co2_edge": {
                        "commodity": "CO2",
                        "unidirectional": true,
                        "has_capacity": false,
                        "end_vertex": "co2_sink"
                    }
                }
            },
            "instance_data": [
                {
                    "id": "MIDAT_natural_gas_fired_combined_cycle_1",
                    "transforms": {
                        "emission_rate": 0.181048235160161,
                        "fuel_consumption": 2.249613533
                    },
                    "edges": {
                        "elec_edge": {
                            "end_vertex": "elec_MIDAT",
                            "can_retire": true,
                            "can_expand": false,
                            "existing_capacity": 4026.4,
                            "investment_cost": 0.0,
                            "fixed_om_cost": 16001,
                            "variable_om_cost": 4.415,
                            "capacity_size": 125.825,
                            "startup_cost": 89.34,
                            "startup_fuel_consumption": 0.58614214,
                            "min_up_time": 6,
                            "min_down_time": 6,
                            "ramp_up_fraction": 0.64,
                            "ramp_down_fraction": 0.64,
                            "min_flow_fraction": 0.444
                        },
                        "fuel_edge": {
                            "start_vertex": "natgas_MIDAT"
                        }
                    }
                },
                {
                    "id": "NE_natural_gas_fired_combined_cycle_1",
                    "transforms": {
                        "emission_rate": 0.181048235160161,
                        "fuel_consumption": 2.511912141
                    },
                    "edges": {
                        "elec_edge": {
                            "end_vertex": "elec_NE",
                            "can_retire": true,
                            "can_expand": false,
                            "existing_capacity": 6119.616,
                            "investment_cost": 0.0,
                            "fixed_om_cost": 16001,
                            "variable_om_cost": 4.415,
                            "capacity_size": 127.492,
                            "startup_cost": 89.34,
                            "startup_fuel_consumption": 0.58614214,
                            "min_up_time": 6,
                            "min_down_time": 6,
                            "ramp_up_fraction": 0.64,
                            "ramp_down_fraction": 0.64,
                            "min_flow_fraction": 0.526
                        },
                        "fuel_edge": {
                            "start_vertex": "natgas_NE"
                        }
                    }
                },
                {
                    "id": "SE_natural_gas_fired_combined_cycle_1",
                    "transforms": {
                        "emission_rate": 0.181048235160161,
                        "fuel_consumption": 2.132092034
                    },
                    "edges": {
                        "elec_edge": {
                            "end_vertex": "elec_SE",
                            "can_retire": true,
                            "can_expand": false,
                            "existing_capacity": 26218.712,
                            "investment_cost": 0.0,
                            "fixed_om_cost": 9496,
                            "variable_om_cost": 3.504,
                            "capacity_size": 504.206,
                            "startup_cost": 89.34,
                            "startup_fuel_consumption": 0.58614214,
                            "min_up_time": 6,
                            "min_down_time": 6,
                            "ramp_up_fraction": 0.64,
                            "ramp_down_fraction": 0.64,
                            "min_flow_fraction": 0.41
                        },
                        "fuel_edge": {
                            "start_vertex": "natgas_SE"
                        }
                    }
                }
            ]
        }
    ]
}

Key Points

  • The global_data field is utilized to define attributes and constraints that apply universally to all instances of a particular asset type.
  • The start_vertex and end_vertex fields indicate the nodes to which the edges are connected. These nodes must be defined in the nodes.json file.
  • By default, only the electricity edge is allowed to expand as a modeling decision (see note below)
  • The electricity edge can have unit commitment operations enabled by setting the uc attribute to true.
  • For a comprehensive list of attributes that can be configured for the transformation and edge components, refer to the transformation and edges pages of the Macro manual.
The `has_capacity` Edge Attribute

The has_capacity attribute is a flag that indicates whether a specific edge of an asset has a capacity variable, allowing it to be expanded or retired. Typically, users do not need to manually adjust this flag, as the asset creators in Macro have already configured it correctly for each edge. However, advanced users can use this flag to override the default settings for each edge if needed.

Prefixes

Users can apply prefixes to adjust parameters for the components of a thermal power plant asset, even when using the standard format. For instance, co2_can_retire will adjust the can_retire parameter for the CO2 edge, and co2_existing_capacity will adjust the existing_capacity parameter for the CO2 edge. Below are the prefixes available for modifying parameters for the components of a thermal power plant asset:

  • transform_ for the transformation component
  • elec_ for the electricity edge
  • co2_ for the CO2 edge
  • co2_captured_ for the CO2 captured edge
  • fuel_ for the fuel edge