Electric Arc Furnace
Contents
Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples
Overview
In Macro, Electric Arc Furnace (EAF) refers to standalone steelmaking facilities where steel scrap is melted and refined into crude steel using electric arc furnaces. These assets are specified via input files in JSON or CSV format, located in the assets directory, and are typically named with descriptive identifiers such as standalone_scrap_electric_arc_furnace.json or standalone_scrap_electric_arc_furnace.csv.
Asset Structure
An EAF plant is made of the following components:
- 1
Transformationcomponent, representing the EAF. - 6
Edgecomponents:- 1 incoming
SteelScrap Edge, representing the steel scrap supply. - 1 incoming
Electricity Edge, representing the electricity supply. - 1 incoming
NaturalGas Edge, representing the natural gas supply.(used in natural gas burners that pre-heat scrap and reduce electricity consumption) - 1 incoming
CarbonSource Edge, representing the carbon source supply. (minimal amount added to adjust the carbon content of the steel, reduce iron oxide losses, and add chemical energy. The carbon source can be metallurgical coal, charcoal, etc.). - 1 outgoing
CrudeSteel Edge, representing crude steel production. - 1 outgoing
CO2 Edge, representing CO2 emitted into the atmosphere.
- 1 incoming
Here is a graphical representation of a scrap-fed EAF asset:
Flow Equations
The ElectricArcFurnace asset follows these stoichiometric relationships:
\[\begin{aligned} \phi_{steelscrap} &= \phi_{crudesteel} \cdot \epsilon_{steelscrap\_consumption} \\ \phi_{elec} &= \phi_{crudesteel} \cdot \epsilon_{elec\_consumption} \\ \phi_{elec} &= \phi_{crudesteel} \cdot \epsilon_{natgas\_consumption} \\ \phi_{elec} &= \phi_{crudesteel} \cdot \epsilon_{carbonsource\_consumption} \\ \phi_{co2} &= \phi_{crudesteel} \cdot \epsilon_{emission\_rate} \\ \end{aligned}\]
Where:
- $\phi$ represents the flow of each commodity.
- $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.
Input File (Standard Format)
The easiest way to include a standalone scrap-EAF asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.
your_case/
├── assets/
│ ├── sstandalone_scrap_electric_arc_furnace.json # or standalone_scrap_electric_arc_furnace.csv
│ ├── other_assets.json
│ └── ...
├── system/
├── settings/
└── ...This file can either be created manually or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model. An example of an input JSON file is shown in the Examples section.
The following tables outline the attributes that can be set for an Electric Arc Furnace asset.
Transform Attributes
Essential Attributes
| Field | Type | Description |
|---|---|---|
Type | String | Asset type identifier: "ElectricArcFurnace" |
id | String | Unique identifier for the asset instance |
location | String | Geographic location/node identifier |
timedata | String | Time resolution for the time series data linked to the transformation |
Conversion Process Parameters
| Field | Type | Description | Units | Default |
|---|---|---|---|---|
ironore_consumption | Float64 | iron ore consumption per ton of crude steel output | $t_{ironore}/t_{crudesteel}$ | 0.0 |
steelscrap_consumption | Float64 | steel scrap consumption per ton of crude steel output | $t_{steelscrap}/t_{crudesteel}$ | 0.0 |
electricity_consumption | Float64 | electricity consumption per ton of crude steel output | $MWh_{elec}/t_{crudesteel}$ | 0.0 |
natgas_consumption | Float64 | natural gas consumption per ton of crude steel output | $MWh/t_{crudesteel}$ | 0.0 |
carbonsource_consumption | Float64 | carbon source (i.e., metallurgical coal, charcoal, etc.) consumption per ton of crude steel output | $t/t_{crudesteel}$ | 0.0 |
emission_rate | Float64 | CO2 emissions per ton of crude steel output | $t_{CO2}/t_{crudesteel}$ | 0.0 |
General Attributes
| Field | Type | Values | Default | Description |
|---|---|---|---|---|
type | String | Any Macro commodity type matching the commodity of the edge | Required | Commodity of the edge. E.g. "Electricity". |
start_vertex | String | Any node id present in the system matching the commodity of the edge | Required | ID of the starting vertex of the edge. The node must be present in the nodes.json file. E.g. "elec_node_1". |
end_vertex | String | Any node id present in the system matching the commodity of the edge | Required | ID of the ending vertex of the edge. The node must be present in the nodes.json file. E.g. "crudesteel_node_1". |
availability | Dict | Availability file path and header | Empty | Path to the availability file and column name for the availability time series to link to the edge. E.g. {"timeseries": {"path": "assets/availability.csv", "header": "ElectricArcFurnace"}}. |
has_capacity | Bool | Bool | false | Whether capacity variables are created for the edge. |
integer_decisions | Bool | Bool | false | Whether capacity variables are integers. |
unidirectional | Bool | Bool | false | Whether the edge is unidirectional. |
As a modeling decision, only the CrudeSteel is allowed to expand. Therefore, both the has_capacity and constraints attributes can only be set for that edge. For all other edges, these attributes are pre-set to false and an empty list, respectively, to ensure the correct modeling of the asset.
Investment Parameters
| Field | Type | Description | Units | Default |
|---|---|---|---|---|
can_retire | Boolean | Whether capacity can be retired | - | true |
can_expand | Boolean | Whether capacity can be expanded | - | true |
existing_capacity | Float64 | Initial installed capacity | tCrudeSteel/hr | 0.0 |
Economic Parameters
| Field | Type | Description | Units | Default |
|---|---|---|---|---|
investment_cost | Float64 | CAPEX per unit capacity | $/tCrudeSteel/hr | 0.0 |
fixed_om_cost | Float64 | Fixed O&M costs | $/tCrudeSteel/hr | 0.0 |
variable_om_cost | Float64 | Variable O&M costs | $/tCrudeSteel | 0.0 |
Constraints Configuration
ElectricArcFurnace assets can have different constraints applied to them, and the user can configure them using the following fields:
| Field | Type | Description |
|---|---|---|
transform_constraints | Dict{String,Bool} | List of constraints applied to the transformation component. |
output_constraints | Dict{String,Bool} | List of constraints applied to the output edge component. |
For example, if the user wants to apply the BalanceConstraint to the transformation component and the MaxCapacityConstraint to the output edge, the constraints fields should be set as follows:
{
"transform_constraints": {
"BalanceConstraint": true
},
"edges":{
"crudesteel_edge": {
"constraints": {
"MaxCapacityConstraint": true
}
}
}Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of an ElectricArcFurnace asset.
Default constraints
To simplify the input file and the asset configuration, the following constraints are applied to the ElectricArcFurnace asset by default:
- Balance constraint (applied to the transformation component)
- Capacity constraint (applied to the output crude steel edge)
Types - Asset Structure
The ElectricArcFurnace asset is defined as follows:
struct ElectricArcFurnace{T <: Commodity} <: AbstractAsset
id::AssetId
eaf_transform::Transformation
crudesteel_edge::Edge{CrudeSteel}
elec_edge::Edge{Electricity}
steelscrap_edge::Edge{SteelScrap}
naturalgas_edge::Edge{NaturalGas}
carbonsource_edge::Edge{T}
co2_edge::Edge{CO2}
endHere, T denotes the carbon source, which may be metallurgical coal, charcoal, etc.
Constructors
Factory constructor
make(asset_type::Type{ElectricArcFurnace}, data::AbstractDict{Symbol,Any}, system::System)| Field | Type | Description |
|---|---|---|
asset_type | Type{ElectricArcFurnace} | Macro type of the asset |
data | AbstractDict{Symbol,Any} | Dictionary containing the input data for the asset |
system | System | System to which the asset belongs |
Stochiometry balance data
eaf_transform.balance_data = Dict(
:electricity_consumption => Dict(
crudesteel_edge.id => get(transform_data, :electricity_consumption, 0.0),
elec_edge.id => 1.0,
),
:steelscrap_consumption => Dict(
crudesteel_edge.id => get(transform_data, :steelscrap_consumption, 0.0),
steelscrap_edge.id => 1.0
),
:naturalgas_consumption => Dict(
crudesteel_edge.id => get(transform_data, :naturalgas_consumption, 0.0),
naturalgas_edge.id => 1.0,
),
:carbonsource_consumption => Dict(
crudesteel_edge.id => get(transform_data, :carbonsource_consumption, 0.0),
carbonsource_edge.id => 1.0,
),
:emissions => Dict(
crudesteel_edge.id => get(transform_data, :emission_rate, 0.0),
co2_edge.id => -1.0,
)
)In the code above, each get function call looks up a parameter in the transform_data dictionary using a symbolic key such as :steelscrap_consumption or :emission_rate. These keys must exactly match the corresponding field names in your input asset .json or .csv files. Mismatched key names between the constructor file and the asset input will result in missing or incorrect parameter values (defaulting to 0.0).
Examples
This example illustrates a basic standalone electric arc furnace configuration in JSON format, featuring standard parameters in a three-zone case. In the example below, the carbon source is assumed to be metallurgical coal.
{
"StandaloneScrapElectricArcFurnace": [
{
"type": "ElectricArcFurnace",
"global_data":{
"transforms": {
"timedata": "Electricity",
"constraints": {
"BalanceConstraint": true
}
},
"edges":{
"crudesteel_edge":{
"type": "CrudeSteel",
"unidirectional": true,
"has_capacity": true,
"can_expand": true,
"can_retire": true,
"integer_decisions": false,
"constraints": {
"CapacityConstraint": true
}
},
"steelscrap_edge":{
"commodity": "SteelScrap",
"unidirectional": true,
"has_capacity": false
},
"elec_edge":{
"commodity": "Electricity",
"unidirectional": true,
"has_capacity": false
},
"naturalgas_edge": {
"commodity": "NaturalGas",
"unidirectional": true,
"has_capacity": false
},
"carbonsource_edge": {
"commodity": "MetCoal",
"unidirectional": true,
"has_capacity": false
},
"co2_edge": {
"commodity": "CO2",
"unidirectional": true,
"has_capacity": false,
"end_vertex": "co2_sink"
}
}
},
"instance_data":[
{
"id": "SE_scrap_eaf",
"transforms": {
"steelscrap_consumption": 1.14,
"electricity_consumption": 0.63,
"naturalgas_consumption": 0.41,
"carbonsource_consumption": 0.02,
"emission_rate": 0.16
},
"edges": {
"crudesteel_edge": {
"end_vertex": "crudesteel_SE",
"existing_capacity": 0.0,
"investment_cost": 2097144,
"fixed_om_cost": 41943,
"variable_om_cost": 72
},
"steelscrap_edge": {
"start_vertex": "steelscrap_source"
},
"elec_edge": {
"start_vertex": "elec_SE"
},
"naturalgas_edge": {
"start_vertex": "natgas_SE"
},
"carbonsource_edge": {
"start_vertex": "metcoal_source"
}
}
},
{
"id": "MIDAT_scrap_eaf",
"transforms": {
"steelscrap_consumption": 1.14,
"electricity_consumption": 0.63,
"naturalgas_consumption": 0.41,
"carbonsource_consumption": 0.02,
"emission_rate": 0.16
},
"edges": {
"crudesteel_edge": {
"end_vertex": "crudesteel_MIDAT",
"existing_capacity": 0.0,
"investment_cost": 2097144,
"fixed_om_cost": 41943,
"variable_om_cost": 72
},
"steelscrap_edge": {
"start_vertex": "steelscrap_source"
},
"elec_edge": {
"start_vertex": "elec_MIDAT"
},
"naturalgas_edge": {
"start_vertex": "natgas_MIDAT"
},
"carbonsource_edge": {
"start_vertex": "metcoal_source"
}
}
},
{
"id": "NE_scrap_eaf",
"transforms": {
"steelscrap_consumption": 1.14,
"electricity_consumption": 0.63,
"naturalgas_consumption": 0.41,
"carbonsource_consumption": 0.02,
"emission_rate": 0.16
},
"edges": {
"crudesteel_edge": {
"end_vertex": "crudesteel_NE",
"existing_capacity": 0.0,
"investment_cost": 2097144,
"fixed_om_cost": 41943,
"variable_om_cost": 72
},
"steelscrap_edge": {
"start_vertex": "steelscrap_source"
},
"elec_edge": {
"start_vertex": "elec_NE"
},
"naturalgas_edge": {
"start_vertex": "natgas_NE"
},
"carbonsource_edge": {
"start_vertex": "metcoal_source"
}
}
}
]
}
]
}See Also
- Edges - Components that connect Vertices and carry flows
- Transformations - Processes that transform flows of several Commodities
- Nodes - Network nodes that allow for import and export of commodities
- Vertices - Network nodes that edges connect
- Assets - Higher-level components made from edges, nodes, storage, and transformations
- Commodities - Types of resources stored by Commodities
- Time Data - Temporal modeling framework
- Constraints - Additional constraints for Storage and other components