Natural Gas DAC
Contents
Overview | Asset Structure | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples | Best Practices | Input File (Advanced Format)
Overview
Natural Gas DAC (Direct Air Capture) assets in Macro represent carbon dioxide removal technologies that use natural gas as a fuel source to capture CO₂ directly from the atmosphere. These assets are defined using either JSON or CSV input files placed in the assets
directory, typically named natgasdac.json
or natgasdac.csv
.
Asset Structure
A natural gas DAC asset consists of one transformation component and five edge components:
- Transformation Component: Balances the incoming and outgoing flows of natural gas, CO₂, and electricity
- Natural Gas Edge: Incoming edge representing natural gas fuel supply
- CO₂ Edge: Incoming edge representing CO₂ absorption from atmosphere
- Electricity Edge: Outgoing edge representing electricity production
- CO₂ Emission Edge: Outgoing edge representing CO₂ emissions from the process
- CO₂ Captured Edge: Outgoing edge representing captured CO₂
Here is a graphical representation of the Natural Gas DAC asset:
Flow Equations
The natural gas DAC asset follows these stoichiometric relationships:
\[\begin{aligned} \phi_{elec} &= \phi_{co2} \cdot \epsilon_{elec\_prod} \\ \phi_{ng} &= \phi_{co2} \cdot \epsilon_{fuel\_consumption} \\ \phi_{co2} &= \phi_{ng} \cdot \epsilon_{emission\_rate} \\ \phi_{co2\_captured} &= \phi_{ng} \cdot \epsilon_{co2\_capture\_rate} + \phi_{co2}\\ \end{aligned}\]
Where:
- $\phi$ represents the flow of each commodity
- $\epsilon$ represents the stoichiometric coefficients defined in the table below (see table Conversion Process Parameters)
Input File (Standard Format)
The easiest way to include a natural gas DAC asset in a model is to create a new file (either JSON or CSV) and place it in the assets
directory together with the other assets.
your_case/
├── assets/
│ ├── natgasdac.json # or natgasdac.csv
│ ├── other_assets.json
│ └── ...
├── system/
├── settings/
└── ...
This file can either be created manually, or using the template_asset
function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model.
The following is an example of a Natural Gas DAC asset input file:
{
"NaturalGasDAC": [
{
"type": "NaturalGasDAC",
"instance_data": [
{
"id": "SE_Solvent_DAC",
"location": "SE",
"co2_sink": "co2_sink",
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"co2_constraints": {
"RampingLimitConstraint": true
},
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0,
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_Solvent_DAC"
}
}
}
]
}
]
}
When working with JSON input files, the global_data
field can be used to group data that is common to all instances of the same asset type. This is useful for setting constraints that are common to all instances of the same asset type and avoid repeating the same data for each instance. See the Examples section below for an example.
The following tables outline the attributes that can be set for a Natural Gas DAC asset.
Essential Attributes
Field | Type | Description |
---|---|---|
Type | String | Asset type identifier: "NaturalGasDAC" |
id | String | Unique identifier for the Natural Gas DAC instance |
location | String | Geographic location/node identifier |
co2_sink | String | ID of a CO₂ sink vertex (must be defined in the nodes input file) |
Conversion Process Parameters
The following set of parameters control the conversion process and stoichiometry of the natgasdaq asset (see Flow Equations for more details).
Field | Type | Description | Units | Default |
---|---|---|---|---|
capture_rate | Float64 | CO₂ capture rate per unit natural gas | $t_{CO₂}/MWh$ | 1.0 |
electricity_production | Float64 | Electricity production per unit CO₂ processed | $MWh/t_{CO₂}$ | 0.0 |
emission_rate | Float64 | CO₂ emission rate per unit natural gas | $t_{CO₂}/MWh$ | 1.0 |
fuel_consumption | Float64 | Natural gas consumption per unit CO₂ processed | $MWh/t_{CO₂}$ | 0.0 |
Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to a Natural Gas DAC asset.
Constraints Configuration
Natural gas DAC assets can have different constraints applied to them, and the user can configure them using the following fields:
Field | Type | Description |
---|---|---|
transform_constraints | Dict{String,Bool} | List of constraints applied to the transformation component. |
co2_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ edge. |
natgas_constraints | Dict{String,Bool} | List of constraints applied to the natural gas edge. |
elec_constraints | Dict{String,Bool} | List of constraints applied to the electricity edge. |
co2_emission_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ emission edge. |
co2_captured_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ captured edge. |
Default constraints
To simplify the input file and the asset configuration, the following constraints are applied to the Natural Gas DAC asset by default:
- Balance constraint (applied to the transformation component)
- Capacity constraint (applied to the CO₂ edge)
Investment Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
can_retire | Boolean | Whether capacity can be retired | - | true |
can_expand | Boolean | Whether capacity can be expanded | - | true |
existing_capacity | Float64 | Initial installed capacity | $t_{CO₂}/hr$ | 0.0 |
capacity_size | Float64 | Unit size for capacity decisions | - | 1.0 |
Additional Investment Parameters
Maximum and minimum capacity constraints
If MaxCapacityConstraint
or MinCapacityConstraint
are added to the constraints dictionary for the CO₂ edge, the following parameters are used by Macro:
Field | Type | Description | Units | Default |
---|---|---|---|---|
max_capacity | Float64 | Maximum allowed capacity | $t_{CO₂}/hr$ | Inf |
min_capacity | Float64 | Minimum allowed capacity | $t_{CO₂}/hr$ | 0.0 |
Economic Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
investment_cost | Float64 | CAPEX per unit capacity | $\$/(t_{CO₂}/hr)$ | 0.0 |
annualized_investment_cost | Union{Nothing,Float64} | Annualized CAPEX | $\$/(t_{CO₂}/hr/yr)$ | calculated |
fixed_om_cost | Float64 | Fixed O&M costs | $\$/(t_{CO₂}/hr/yr)$ | 0.0 |
variable_om_cost | Float64 | Variable O&M costs | $\$/t_{CO₂}$ | 0.0 |
wacc | Float64 | Weighted average cost of capital | fraction | 0.0 |
lifetime | Int | Asset lifetime in years | years | 1 |
capital_recovery_period | Int | Investment recovery period | years | 1 |
retirement_period | Int | Retirement period | years | 0 |
Operational Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
availability | Dict | Availability file path and header | - | Empty |
Additional Operational Parameters
Ramping limit constraint
If RampingLimitConstraint
is added to the constraints dictionary for the CO₂ edge, the following parameters are used:
Field | Type | Description | Units | Default |
---|---|---|---|---|
ramp_up_fraction | Float64 | Maximum increase in output between timesteps | fraction | 1.0 |
ramp_down_fraction | Float64 | Maximum decrease in output between timesteps | fraction | 1.0 |
Types - Asset Structure
The NaturalGasDAC
asset is defined as follows:
struct NaturalGasDAC <: AbstractAsset
id::AssetId
natgasdac_transform::Transformation
co2_edge::Edge{<:CO2}
co2_emission_edge::Edge{<:CO2}
natgas_edge::Edge{<:NaturalGas}
elec_edge::Edge{<:Electricity}
co2_captured_edge::Edge{<:CO2Captured}
end
Constructors
Default constructor
NaturalGasDAC(id::AssetId, natgasdac_transform::Transformation, co2_edge::Edge{<:CO2}, co2_emission_edge::Edge{<:CO2}, natgas_edge::Edge{<:NaturalGas}, elec_edge::Edge{<:Electricity}, co2_captured_edge::Edge{<:CO2Captured})
Factory constructor
make(asset_type::Type{NaturalGasDAC}, data::AbstractDict{Symbol,Any}, system::System)
Field | Type | Description |
---|---|---|
asset_type | Type{NaturalGasDAC} | Macro type of the asset |
data | AbstractDict{Symbol,Any} | Dictionary containing the input data for the asset |
system | System | System to which the asset belongs |
Examples
This section contains examples of how to use the natural gas DAC asset in a Macro model.
Fixed Capacity Natural Gas DAC
This example shows a natural gas DAC asset located in the SE region. A RampingLimitConstraint
constraint is applied to the CO₂ edge with a ramping limit of 1.0. The asset has an availability time series loaded from a CSV file.
JSON Format:
{
"NaturalGasDAC": [
{
"type": "NaturalGasDAC",
"instance_data": [
{
"id": "SE_Solvent_DAC",
"location": "SE",
"co2_sink": "co2_sink",
"co2_constraints": {
"RampingLimitConstraint": true
},
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0,
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_Solvent_DAC"
}
}
}
]
}
]
}
CSV Format:
Type | id | location | co2_sink | co2_constraints–RampingLimitConstraint | emission_rate | capture_rate | electricity_production | fuel_consumption | investment_cost | fixed_om_cost | variable_om_cost | ramp_up_fraction | ramp_down_fraction | availability–timeseries–path | availability–timeseries–header |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NaturalGasDAC | SE_Solvent_DAC | SE | co2_sink | true | 0.001810482 | 0.179237753 | 0.125 | 3.047059187 | 973000 | 430000 | 65.42 | 1.0 | 1.0 | system/availability.csv | SE_Solvent_DAC |
Multiple Natural Gas DAC assets in different zones
This example shows three natural gas DAC assets located in the SE, MIDAT, and NE regions. A RampingLimitConstraint
constraint is applied to the CO₂ edge with a ramping limit of 1.0. The asset has an availability time series loaded from a CSV file.
JSON Format:
Note that the global_data
field is used to set the fields and constraints that are common to all instances of the same asset type.
{
"NaturalGasDAC": [
{
"type": "NaturalGasDAC",
"global_data": {
"transforms_timedata": "NaturalGas",
"co2_constraints": {
"RampingLimitConstraint": true
},
"co2_sink": "co2_sink",
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0
},
"instance_data": [
{
"id": "SE_Solvent_DAC",
"location": "SE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_Solvent_DAC"
}
}
},
{
"id": "MIDAT_Solvent_DAC",
"location": "MIDAT",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_Solvent_DAC"
}
}
},
{
"id": "NE_Solvent_DAC",
"location": "NE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_Solvent_DAC"
}
}
}
]
}
]
}
CSV Format:
Type | id | location | co2_constraints–RampingLimitConstraint | co2_sink | emission_rate | capture_rate | electricity_production | fuel_consumption | investment_cost | fixed_om_cost | variable_om_cost | ramp_up_fraction | ramp_down_fraction | availability–timeseries–path | availability–timeseries–header |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NaturalGasDAC | SE_Solvent_DAC | SE | true | co2_sink | 0.001810482 | 0.179237753 | 0.125 | 3.047059187 | 973000 | 430000 | 65.42 | 1.0 | 1.0 | system/availability.csv | SE_Solvent_DAC |
NaturalGasDAC | MIDAT_Solvent_DAC | MIDAT | true | co2_sink | 0.001810482 | 0.179237753 | 0.125 | 3.047059187 | 973000 | 430000 | 65.42 | 1.0 | 1.0 | system/availability.csv | MIDAT_Solvent_DAC |
NaturalGasDAC | NE_Solvent_DAC | NE | true | co2_sink | 0.001810482 | 0.179237753 | 0.125 | 3.047059187 | 973000 | 430000 | 65.42 | 1.0 | 1.0 | system/availability.csv | NE_Solvent_DAC |
Best Practices
- Use global data for common fields and constraints: Use the
global_data
field to set the fields and constraints that are common to all instances of the same asset type. - Set realistic stoichiometric coefficients: Ensure the transformation parameters reflect actual technology performance
- Use meaningful IDs: Choose descriptive identifiers that indicate location and technology type
- Consider ramping constraints: Set appropriate ramping limits based on technology characteristics
- Use constraints selectively: Only enable constraints that are necessary for your modeling needs
- Validate costs: Ensure investment and O&M costs are in appropriate units
- Test configurations: Start with simple configurations and gradually add complexity
- Account for emissions: Include both direct emissions and electricity production in the model
Input File (Advanced Format)
Macro provides an advanced format for defining Natural Gas DAC assets, offering users and modelers detailed control over asset specifications. This format builds upon the standard format and is ideal for those who need more comprehensive customization.
To understand the advanced format, consider the graph representation and the type definition of a Natural Gas DAC asset. The input file mirrors this hierarchical structure.
A Natural Gas DAC asset in Macro is composed of a transformation component, represented by a Transformation
object, and two edges (CO₂ and electricity), each represented by an Edge
object. The input file for a Natural Gas DAC asset is therefore organized as follows:
{
"transforms": {
// ... transformation-specific attributes ...
},
"edges":{
"ng_edge": {
// ... ng_edge-specific attributes ...
},
"co2_edge": {
// ... co2_edge-specific attributes ...
},
"elec_edge": {
// ... elec_edge-specific attributes ...
},
"co2_emission_edge": {
// ... co2_emission_edge-specific attributes ...
},
"co2_captured_edge": {
// ... co2_captured_edge-specific attributes ...
}
}
}
Each top-level key (e.g., "transforms" or "edges") denotes a component type. The second-level keys either specify the attributes of the component (when there is a single instance) or identify the instances of the component (e.g., "co2edge" or "elecedge") when there are multiple instances. For multiple instances, a third-level key details the attributes for each instance.
Each top-level key (e.g., "transforms" or "edges") denotes a component type. The second-level keys either specify the attributes of the component (when there is a single instance) or identify the instances of the component (e.g., "co2_edge", "co2_emission_edge", "natgas_edge", "elec_edge", "co2_captured_edge") when there are multiple instances. For multiple instances, a third-level key details the attributes for each instance.
Below is an example of an input file for a natural gas DAC asset that sets up multiple natural gas DAC assets across different regions.
{
"NaturalGasDAC": [
{
"type": "NaturalGasDAC",
"global_data": {
"transforms": {
"timedata": "NaturalGas",
"constraints": {
"BalanceConstraint": true
}
},
"edges": {
"co2_edge": {
"commodity": "CO2",
"unidirectional": true,
"has_capacity": true,
"start_vertex": "co2_sink",
"can_retire": true,
"can_expand": true,
"integer_decisions": false,
"uc": false,
"constraints": {
"CapacityConstraint": true,
"RampingLimitConstraint": true
}
},
"co2_emission_edge": {
"commodity": "CO2",
"unidirectional": true,
"has_capacity": false,
"end_vertex": "co2_sink"
},
"natgas_edge": {
"commodity": "NaturalGas",
"unidirectional": true,
"has_capacity": false
},
"elec_edge": {
"commodity": "Electricity",
"unidirectional": true,
"has_capacity": false
},
"co2_captured_edge": {
"commodity": "CO2Captured",
"unidirectional": true,
"has_capacity": false
}
}
},
"instance_data": [
{
"id": "SE_Solvent_DAC",
"transforms": {
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187
},
"edges": {
"co2_edge": {
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_Solvent_DAC"
}
},
"existing_capacity": 0.0,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0
},
"natgas_edge": {
"start_vertex": "natgas_SE"
},
"elec_edge": {
"end_vertex": "elec_SE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_SE"
}
}
},
{
"id": "MIDAT_Solvent_DAC",
"transforms": {
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187
},
"edges": {
"co2_edge": {
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_Solvent_DAC"
}
},
"existing_capacity": 0.0,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0
},
"natgas_edge": {
"start_vertex": "natgas_MIDAT"
},
"elec_edge": {
"end_vertex": "elec_MIDAT"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_MIDAT"
}
}
},
{
"id": "NE_Solvent_DAC",
"transforms": {
"emission_rate": 0.001810482,
"capture_rate": 0.179237753,
"electricity_production": 0.125,
"fuel_consumption": 3.047059187
},
"edges": {
"co2_edge": {
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_Solvent_DAC"
}
},
"existing_capacity": 0.0,
"investment_cost": 973000,
"fixed_om_cost": 430000,
"variable_om_cost": 65.42,
"ramp_up_fraction": 1.0,
"ramp_down_fraction": 1.0
},
"natgas_edge": {
"start_vertex": "natgas_NE"
},
"elec_edge": {
"end_vertex": "elec_NE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_NE"
}
}
}
]
}
]
}
Key Points
- The
global_data
field is utilized to define attributes and constraints that apply universally to all instances of a particular asset type. - The
start_vertex
andend_vertex
fields indicate the nodes to which the edges are connected. These nodes must be defined in thenodes.json
file. - By default, only the CO₂ edge is allowed to have capacity variables and constraints, as this represents the main capacity decision for the DAC facility (see note below).
- For a comprehensive list of attributes that can be configured for the transformation and edge components, refer to the transformation and edges pages of the Macro manual.
The has_capacity
attribute is a flag that indicates whether a specific edge of an asset has a capacity variable, allowing it to be expanded or retired. Typically, users do not need to manually adjust this flag, as the asset creators in Macro have already configured it correctly for each edge. However, advanced users can use this flag to override the default settings for each edge if needed.
Users can apply prefixes to adjust parameters for the components of a Natural Gas DAC asset, even when using the standard format. For instance, co2_can_retire
will adjust the can_retire
parameter for the CO₂ edge, and co2_existing_capacity
will adjust the existing_capacity
parameter for the CO₂ edge. Below are the prefixes available for modifying parameters for the components of a Natural Gas DAC asset:
transform_
for the transformation componentnatgas_
for the natural gas edgeco2_
for the CO₂ edgeco2_emission_
for the CO₂ emission edgeco2_captured_
for the CO₂ captured edgeelec_
for the electricity edge