BECCS Hydrogen
Contents
Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples | Best Practices | Input File (Advanced Format)
Overview
BECCS Hydrogen assets in Macro represent Bioenergy with Carbon Capture and Storage (BECCS) technologies that produce hydrogen from biomass while capturing CO₂. These assets are defined using either JSON or CSV input files placed in the assets
directory, typically named beccs_hydrogen.json
or beccs_hydrogen.csv
.
Asset Structure
A BECCS hydrogen asset consists of one transformation component and six edge components:
- Biomass Edge: Incoming edge representing biomass supply
- CO₂ Edge: Incoming edge representing CO₂ absorption from atmosphere
- Electricity Edge: Incoming edge representing electricity consumption
- Transformation Component: Balances flows of biomass, CO₂, electricity, hydrogen, and CO₂ captured
- Hydrogen Edge: Outgoing edge representing hydrogen production
- CO₂ Emission Edge: Outgoing edge representing CO₂ emissions from the process
- CO₂ Captured Edge: Outgoing edge representing captured CO₂
Here is a graphical representation of the BECCS hydrogen asset:
Flow Equations
The BECCS hydrogen asset follows these stoichiometric relationships:
\[\begin{aligned} \phi_{h2} &= \phi_{biomass} \cdot \epsilon_{h2\_prod} \\ \phi_{elec} &= -\phi_{biomass} \cdot \epsilon_{elec\_cons} \\ \phi_{co2} &= -\phi_{biomass} \cdot \epsilon_{co2\_content} \\ \phi_{co2\_emitted} &= \phi_{biomass} \cdot \epsilon_{emission\_rate} \\ \phi_{co2\_captured} &= \phi_{biomass} \cdot \epsilon_{capture\_rate} \\ \end{aligned}\]
Where:
- $\phi$ represents the flow of each commodity
- $\epsilon$ represents the stoichiometric coefficients defined in the table below (see table Conversion Process Parameters)
Input File (Standard Format)
The easiest way to include a BECCS hydrogen asset in a model is to create a new file (either JSON or CSV) and place it in the assets
directory together with the other assets.
your_case/
├── assets/
│ ├── beccs_hydrogen.json # or beccs_hydrogen.csv
│ ├── other_assets.json
│ └── ...
├── system/
├── settings/
└── ...
This file can either be created manually, or using the template_asset
function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model.
The following is an example of a BECCS hydrogen asset input file:
{
"BECCS_H2": [
{
"type": "BECCSHydrogen",
"global_data": {
"biomass_constraints": {
"MinFlowConstraint": true
},
"capacity_size": 400,
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"co2_content": 1.717,
"emission_rate": 0.252399,
"capture_rate": 1.464601,
"min_flow_fraction": 0.85,
"co2_sink": "co2_sink"
},
"instance_data": [
{
"id": "SE_BECCS_H2_Herb",
"location": "SE",
"biomass_commodity": "Biomass_Herb",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Herb"
}
}
},
{
"id": "SE_BECCS_H2_Wood",
"location": "SE",
"biomass_commodity": "Biomass_Wood",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Wood"
}
}
}
]
}
]
}
When working with JSON input files, the global_data
field can be used to group data that is common to all instances of the same asset type. This is useful for setting constraints that are common to all instances of the same asset type and avoid repeating the same data for each instance. See the Examples section below for an example.
The following tables outline the attributes that can be set for a BECCS hydrogen asset.
Essential Attributes
Field | Type | Description |
---|---|---|
Type | String | Asset type identifier: "BECCSHydrogen" |
id | String | Unique identifier for the BECCS hydrogen instance |
location | String | Geographic location/node identifier |
biomass_commodity | String | Commodity identifier for the biomass supply (can be a sub-commodity of Biomass ) |
co2_sink | String | ID of a CO₂ sink vertex (must be defined in the nodes input file) |
Conversion Process Parameters
The following set of parameters control the converssion process and stoichiometry of the BECCS hydrogen asset (see Flow Equations for more details).
Field | Type | Description | Units | Default |
---|---|---|---|---|
hydrogen_production | Float64 | Hydrogen production per unit biomass | $MWh_{H₂}/t_{Biomass}$ | 0.0 |
electricity_consumption | Float64 | Electricity consumption per unit biomass | $MWh/t_{Biomass}$ | 0.0 |
capture_rate | Float64 | CO₂ capture rate per unit biomass | $t_{CO₂}/t_{Biomass}$ | 1.0 |
co2_content | Float64 | CO₂ content in biomass | $t_{CO₂}/t_{Biomass}$ | 0.0 |
emission_rate | Float64 | CO₂ emission rate per unit biomass | $t_{CO₂}/t_{Biomass}$ | 1.0 |
Constraints Configuration
BECCS hydrogen assets can have different constraints applied to them, and the user can configure them using the following fields:
Field | Type | Description |
---|---|---|
transform_constraints | Dict{String,Bool} | List of constraints applied to the transformation component. |
biomass_constraints | Dict{String,Bool} | List of constraints applied to the biomass edge. |
co2_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ edge. |
elec_constraints | Dict{String,Bool} | List of constraints applied to the electricity edge. |
h2_constraints | Dict{String,Bool} | List of constraints applied to the hydrogen edge. |
co2_captured_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ captured edge. |
co2_emission_constraints | Dict{String,Bool} | List of constraints applied to the CO₂ emission edge. |
For example, if the user wants to apply the BalanceConstraint
to the transformation component and the CapacityConstraint
to the biomass edge, the constraints fields should be set as follows:
{
"transform_constraints": {
"BalanceConstraint": true
},
"biomass_constraints": {
"CapacityConstraint": true
}
}
Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of a BECCS hydrogen asset.
Default constraints
To simplify the input file and the asset configuration, the following constraints are applied to the BECCS hydrogen asset by default:
- Balance constraint (applied to the transformation component)
- Capacity constraint (applied to the biomass edge)
Investment Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
can_retire | Boolean | Whether BECCS hydrogen asset capacity can be retired | - | true |
can_expand | Boolean | Whether BECCS hydrogen asset capacity can be expanded | - | true |
existing_capacity | Float64 | Initial installed BECCS hydrogen asset capacity | $t_{Biomass}/hr$ | 0.0 |
capacity_size | Float64 | Unit size for capacity decisions | - | 1.0 |
Additional Investment Parameters
Maximum and minimum capacity constraints
If MaxCapacityConstraint
or MinCapacityConstraint
are added to the constraints dictionary for the biomass edge, the following parameters are used by Macro:
Field | Type | Description | Units | Default |
---|---|---|---|---|
max_capacity | Float64 | Maximum allowed BECCS hydrogen asset capacity | $t_{Biomass}/hr$ | Inf |
min_capacity | Float64 | Minimum allowed BECCS hydrogen asset capacity | $t_{Biomass}/hr$ | 0.0 |
Economic Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
investment_cost | Float64 | CAPEX per unit BECCS hydrogen asset capacity | $\$/(t_{Biomass}/hr)$ | 0.0 |
annualized_investment_cost | Union{Nothing,Float64} | Annualized CAPEX | $\$/(t_{Biomass}/hr/yr)$ | calculated |
fixed_om_cost | Float64 | Fixed O&M costs of the BECCS hydrogen asset | $\$/(t_{Biomass}/hr/yr)$ | 0.0 |
variable_om_cost | Float64 | Variable O&M costs of the BECCS hydrogen asset | $\$/t_{Biomass}$ | 0.0 |
Operational Parameters
Field | Type | Description | Units | Default |
---|---|---|---|---|
availability | Dict | Path to availability file and column name | - | Empty |
Additional Operational Parameters
Minimum flow constraint
If MinFlowConstraint
is added to the constraints dictionary for the biomass edge, the following parameter is used:
Field | Type | Description | Units | Default |
---|---|---|---|---|
min_flow_fraction | Float64 | Minimum flow as fraction of capacity | fraction | 0.0 |
Types - Asset Structure
The BECCSHydrogen
asset is defined as follows:
struct BECCSHydrogen <: AbstractAsset
id::AssetId
beccs_transform::Transformation
biomass_edge::Edge{<:Biomass}
h2_edge::Edge{<:Hydrogen}
elec_edge::Edge{<:Electricity}
co2_edge::Edge{<:CO2}
co2_emission_edge::Edge{<:CO2}
co2_captured_edge::Edge{<:CO2Captured}
end
Constructors
Default constructor
BECCSHydrogen(id::AssetId, beccs_transform::Transformation, biomass_edge::Edge{<:Biomass}, h2_edge::Edge{<:Hydrogen}, elec_edge::Edge{<:Electricity}, co2_edge::Edge{<:CO2}, co2_captured_edge::Edge{<:CO2Captured}, co2_emission_edge::Edge{<:CO2})
Factory constructor
make(asset_type::Type{BECCSHydrogen}, data::AbstractDict{Symbol,Any}, system::System)
Field | Type | Description |
---|---|---|
asset_type | Type{BECCSHydrogen} | Macro type of the asset |
data | AbstractDict{Symbol,Any} | Dictionary containing the input data for the asset |
system | System | System to which the asset belongs |
Examples
This section contains examples of how to use the BECCS hydrogen asset in a Macro model.
Simple BECCS Hydrogen Asset
This example shows a single BECCS hydrogen asset with existing capacity using Biomass_Herb
as the biomass commodity.
JSON Format:
{
"BECCS_H2": [
{
"type": "BECCSHydrogen",
"instance_data": [
{
"id": "SE_BECCS_H2_Herb",
"location": "SE",
"biomass_commodity": "Biomass_Herb",
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399,
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"existing_capacity": 400,
"co2_sink": "co2_sink",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Herb"
}
}
}
]
}
]
}
CSV Format:
Type | id | location | biomass_commodity | hydrogen_production | electricity_consumption | capture_rate | co2_content | emission_rate | investment_cost | fixed_om_cost | variable_om_cost | existing_capacity | co2_sink | availability–timeseries–path | availability–timeseries–header |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BECCSHydrogen | SE_BECCS_H2_Herb | SE | Biomass_Herb | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | SE_BECCS_H2_Herb |
Multiple BECCS Hydrogen Assets in Different Zones
This example shows how to create a set of BECCS hydrogen assets in different zones, with different biomass commodities (herb and wood). The biomass constraints are set to the MinFlowConstraint
constraint with a minimum flow fraction of 0.85, and the availability time series are set to the SE_BECCS_H2_Herb
, MIDAT_BECCS_H2_Herb
, NE_BECCS_H2_Herb
, SE_BECCS_H2_Wood
, MIDAT_BECCS_H2_Wood
, and NE_BECCS_H2_Wood
time series read from the system/availability.csv
file.
JSON Format:
Note that the global_data
field is used to set the fields and constraints that are common to all instances of the same asset type.
{
"BECCS_H2": [
{
"type": "BECCSHydrogen",
"global_data": {
"biomass_constraints": {
"MinFlowConstraint": true
},
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399,
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85,
"co2_sink": "co2_sink"
},
"instance_data": [
{
"id": "SE_BECCS_H2_Herb",
"location": "SE",
"biomass_commodity": "Biomass_Herb",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Herb"
}
}
},
{
"id": "MIDAT_BECCS_H2_Herb",
"location": "MIDAT",
"biomass_commodity": "Biomass_Herb",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_BECCS_H2_Herb"
}
}
},
{
"id": "NE_BECCS_H2_Herb",
"location": "NE",
"biomass_commodity": "Biomass_Herb",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_BECCS_H2_Herb"
}
}
},
{
"id": "SE_BECCS_H2_Wood",
"location": "SE",
"biomass_commodity": "Biomass_Wood",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Wood"
}
}
},
{
"id": "MIDAT_BECCS_H2_Wood",
"location": "MIDAT",
"biomass_commodity": "Biomass_Wood",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_BECCS_H2_Wood"
}
}
},
{
"id": "NE_BECCS_H2_Wood",
"location": "NE",
"biomass_commodity": "Biomass_Wood",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_BECCS_H2_Wood"
}
}
}
]
}
]
}
CSV Format:
Type | id | location | biomass_commodity | hydrogen_production | electricity_consumption | capture_rate | co2_content | emission_rate | investment_cost | fixed_om_cost | variable_om_cost | existing_capacity | co2_sink | availability–timeseries–path | availability–timeseries–header |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BECCSHydrogen | SE_BECCS_H2_Herb | SE | Biomass_Herb | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | SE_BECCS_H2_Herb |
BECCSHydrogen | MIDAT_BECCS_H2_Herb | MIDAT | Biomass_Herb | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | MIDAT_BECCS_H2_Herb |
BECCSHydrogen | NE_BECCS_H2_Herb | NE | Biomass_Herb | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | NE_BECCS_H2_Herb |
BECCSHydrogen | SE_BECCS_H2_Wood | SE | Biomass_Wood | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | SE_BECCS_H2_Wood |
BECCSHydrogen | MIDAT_BECCS_H2_Wood | MIDAT | Biomass_Wood | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | MIDAT_BECCS_H2_Wood |
BECCSHydrogen | NE_BECCS_H2_Wood | NE | Biomass_Wood | 2.996580638 | 0.0834 | 1.464601 | 1.717 | 0.252399 | 585304 | 66030 | 42.26 | 400 | co2_sink | system/availability.csv | NE_BECCS_H2_Wood |
Best Practices
- Use global data for common fields and constraints: Use the
global_data
field to set the fields and constraints that are common to all instances of the same asset type. - Set realistic stoichiometric coefficients: Ensure the transformation parameters reflect actual technology performance
- Use meaningful IDs: Choose descriptive identifiers that indicate location and biomass type
- Consider availability profiles: Use availability time series to model seasonal variations in biomass supply
- Validate costs: Ensure investment and O&M costs are in appropriate units
- Test configurations: Start with simple configurations and gradually add complexity
- Monitor CO₂ balance: Ensure the CO₂ capture and emission rates are consistent with the overall system CO₂ balance
Input File (Advanced Format)
Macro provides an advanced format for defining BECCS hydrogen assets, offering users and modelers detailed control over asset specifications. This format builds upon the standard format and is ideal for those who need more comprehensive customization.
To understand the advanced format, consider the graph representation and the type definition of a BECCS hydrogen asset. The input file mirrors this hierarchical structure.
A BECCS hydrogen asset in Macro is composed of a transformation component, represented by a Transformation
object, and six edges, each represented by an Edge
object. The input file for a BECCS hydrogen asset is therefore organized as follows:
{
"transforms":{
// ... transformation-specific attributes ...
},
"edges":{
"biomass_edge": {
// ... biomass_edge-specific attributes ...
},
"co2_edge": {
// ... co2_edge-specific attributes ...
},
"h2_edge": {
// ... h2_edge-specific attributes ...
},
"elec_edge": {
// ... elec_edge-specific attributes ...
},
"co2_emission_edge": {
// ... co2_emission_edge-specific attributes ...
},
"co2_captured_edge": {
// ... co2_captured_edge-specific attributes ...
}
}
}
Each top-level key (e.g., "transforms" or "edges") denotes a component type. The second-level keys either specify the attributes of the component (when there is a single instance) or identify the instances of the component (e.g., "biomass_edge", "h2_edge", etc.) when there are multiple instances. For multiple instances, a third-level key details the attributes for each instance.
Below is an example of an input file for a BECCS hydrogen asset that sets up a pair of assets (one with Biomass_Herb
and one with Biomass_Wood
) in the SE, MIDAT, and NE regions.
{
"BECCS_Hydrogen": [
{
"type": "BECCSHydrogen",
"global_data": {
"transforms": {
"timedata": "Biomass",
"constraints": {
"BalanceConstraint": true
}
},
"edges": {
"elec_edge": {
"commodity": "Electricity",
"unidirectional": true,
"has_capacity": false
},
"h2_edge": {
"commodity": "Hydrogen",
"unidirectional": true,
"has_capacity": false
},
"biomass_edge": {
"unidirectional": true,
"has_capacity": true,
"can_expand": true,
"can_retire": true,
"integer_decisions": false,
"constraints": {
"CapacityConstraint": true,
"MinFlowConstraint": true
}
},
"co2_edge": {
"commodity": "CO2",
"unidirectional": true,
"has_capacity": false,
"start_vertex": "co2_sink"
},
"co2_emission_edge": {
"commodity": "CO2",
"unidirectional": true,
"has_capacity": false,
"end_vertex": "co2_sink"
},
"co2_captured_edge": {
"commodity": "CO2Captured",
"unidirectional": true,
"has_capacity": false
}
}
},
"instance_data": [
{
"id": "SE_BECCS_H2_Herb",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Herb",
"start_vertex": "bioherb_SE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Herb"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_SE"
},
"h2_edge": {
"end_vertex": "h2_SE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_SE"
}
}
},
{
"id": "MIDAT_BECCS_H2_Herb",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Herb",
"start_vertex": "bioherb_MIDAT",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_BECCS_H2_Herb"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_MIDAT"
},
"h2_edge": {
"end_vertex": "h2_MIDAT"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_MIDAT"
}
}
},
{
"id": "NE_BECCS_H2_Herb",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Herb",
"start_vertex": "bioherb_NE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_BECCS_H2_Herb"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_NE"
},
"h2_edge": {
"end_vertex": "h2_NE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_NE"
}
}
},
{
"id": "SE_BECCS_H2_Wood",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Wood",
"start_vertex": "biowood_SE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "SE_BECCS_H2_Wood"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_SE"
},
"h2_edge": {
"end_vertex": "h2_SE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_SE"
}
}
},
{
"id": "MIDAT_BECCS_H2_Wood",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Wood",
"start_vertex": "biowood_MIDAT",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "MIDAT_BECCS_H2_Wood"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_MIDAT"
},
"h2_edge": {
"end_vertex": "h2_MIDAT"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_MIDAT"
}
}
},
{
"id": "NE_BECCS_H2_Wood",
"transforms": {
"hydrogen_production": 2.996580638,
"electricity_consumption": 0.0834,
"capture_rate": 1.464601,
"co2_content": 1.717,
"emission_rate": 0.252399
},
"edges": {
"biomass_edge": {
"commodity": "Biomass_Wood",
"start_vertex": "biowood_NE",
"availability": {
"timeseries": {
"path": "system/availability.csv",
"header": "NE_BECCS_H2_Wood"
}
},
"investment_cost": 585304,
"fixed_om_cost": 66030,
"variable_om_cost": 42.26,
"capacity_size": 400,
"min_flow_fraction": 0.85
},
"elec_edge": {
"start_vertex": "elec_NE"
},
"h2_edge": {
"end_vertex": "h2_NE"
},
"co2_captured_edge": {
"end_vertex": "co2_captured_NE"
}
}
}
]
}
]
}
Key Points
- The
global_data
field is utilized to define attributes and constraints that apply universally to all instances of a particular asset type. - The
start_vertex
andend_vertex
fields indicate the nodes to which the edges are connected. These nodes must be defined in thenodes.json
file. - By default, only the biomass edge is allowed to have capacity variables and constraints, as this represents the main capacity decision for the BECCS facility (see note below).
- The biomass edge uses availability time series to model seasonal variations in biomass supply.
- For a comprehensive list of attributes that can be configured for the transformation and edge components, refer to the transformation and edges pages of the Macro manual.
The has_capacity
attribute is a flag that indicates whether a specific edge of an asset has a capacity variable, allowing it to be expanded or retired. Typically, users do not need to manually adjust this flag, as the asset creators in Macro have already configured it correctly for each edge. However, advanced users can use this flag to override the default settings for each edge if needed.
Users can apply prefixes to adjust parameters for the components of a BECCS hydrogen asset, even when using the standard format. For instance, co2_can_retire
will adjust the can_retire
parameter for the CO2 edge, and co2_existing_capacity
will adjust the existing_capacity
parameter for the CO2 edge. Below are the prefixes available for modifying parameters for the components of a BECCS hydrogen asset:
transform_
for the transformation componentbiomass_
for the biomass edgeco2_
for the CO2 edgeco2_emission_
for the CO2 emission edgeco2_captured_
for the CO2 captured edgeh2_
for the hydrogen edgeelec_
for the electricity edge