Aluminum Smelting

Contents

Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples

Overview

In Macro, the Aluminum Smelting asset represents an energy-intensive aluminum production facility using the Hall-Héroult process. This is the primary electrolytic process for producing aluminum from alumina. The process consumes large amounts of electricity (approximately 13.3 MWh per tonne of aluminum), making it one of the most energy-intensive industrial processes. The facility uses alumina and graphite as feedstocks, and produces aluminum and CO₂ emissions.

Energy Intensity

Aluminum Smelting is the primary energy-intensive process in aluminum production. The other aluminum-related assets (Aluminum Refining and Alumina Plant) are less energy-intensive and are typically of secondary importance in energy system modeling.

These assets are defined using either JSON or CSV input files placed in the assets directory, typically named with descriptive identifiers like aluminum_smelting.json or aluminum_smelting.csv.

Asset Structure

An Aluminum Smelting plant is made of the following components:

  • 1 Transformation component, representing the aluminum smelting process.
  • 5 Edge components:
    • 1 incoming Electricity Edge, representing electricity consumption (approximately 13.3 MWh per tonne of aluminum).
    • 1 incoming Alumina Edge, representing alumina supply (approximately 1.93 tonnes per tonne of aluminum).
    • 1 incoming Graphite Edge, representing graphite supply (approximately 0.45 tonnes per tonne of aluminum).
    • 1 outgoing Aluminum Edge, representing aluminum production.
    • 1 outgoing CO₂ Edge, representing CO₂ emissions from graphite consumption.

Here is a graphical representation of the Aluminum Smelting asset:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#D1EBDE' }}}%% flowchart BT subgraph AluminumSmelting direction BT A1(("**Electricity**")) e1@-->B{{"**AluminumSmelting**"}} A2(("**Alumina**")) e2@-->B{{"**AluminumSmelting**"}} A3(("**Graphite**")) e3@-->B{{"**AluminumSmelting**"}} B{{"**AluminumSmelting**"}} e4@-->C1(("**Aluminum**")) B{{"**AluminumSmelting**"}} e5@-->C2(("**CO2**")) e1@{ animate: true } e2@{ animate: true } e3@{ animate: true } e4@{ animate: true } e5@{ animate: true } end style A1 font-size:15px,r:46px,fill:#FFD700,stroke:black,color:black,stroke-dasharray: 3,5; style A2 font-size:15px,r:46px,fill:#3498DB,stroke:black,color:black,stroke-dasharray: 3,5; style A3 font-size:15px,r:46px,fill:#8B4513,stroke:black,color:black,stroke-dasharray: 3,5; style B fill:white,stroke:black,color:black; style C1 font-size:15px,r:46px,fill:#566573,stroke:black,color:black,stroke-dasharray: 3,5; style C2 font-size:15px,r:46px,fill:lightgray,stroke:black,color:black,stroke-dasharray: 3,5; linkStyle 0 stroke:#FFD700, stroke-width: 2px; linkStyle 1 stroke:#3498DB, stroke-width: 2px; linkStyle 2 stroke:#8B4513, stroke-width: 2px; linkStyle 3 stroke:#566573, stroke-width: 2px; linkStyle 4 stroke:lightgray, stroke-width: 2px;

Flow Equations

The Aluminum Smelting asset follows these stoichiometric relationships:

\[\begin{aligned} \phi_{elec} &= \phi_{aluminum} \cdot \epsilon_{elec\_aluminum\_rate} \\ \phi_{alumina} &= \phi_{aluminum} \cdot \epsilon_{alumina\_aluminum\_rate} \\ \phi_{graphite} &= \phi_{aluminum} \cdot \epsilon_{graphite\_aluminum\_rate} \\ \phi_{co2} &= \phi_{graphite} \cdot \epsilon_{graphite\_emissions\_rate} \\ \end{aligned}\]

Where:

  • $\phi$ represents the flow of each commodity
  • $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.
  • Note: Aluminum, Alumina, and Graphite flows are in tonnes, while Electricity is in MWh.

Input File (Standard Format)

The easiest way to include an Aluminum Smelting asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.

your_case/
├── assets/
│   ├── aluminum_smelting.json    # or aluminum_smelting.csv
│   ├── other_assets.json
│   └── ...
├── system/
├── settings/
└── ...

This file can either be created manually, or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model. An example of an input JSON file is shown in the Examples section.

The following tables outline the attributes that can be set for an Aluminum Smelting asset.

Transform Attributes

Essential Attributes

FieldTypeDescription
TypeStringAsset type identifier: "AluminumSmelting"
idStringUnique identifier for the asset instance
locationStringGeographic location/node identifier
timedataStringTime resolution for the time series data linked to the transformation

Conversion Process Parameters

FieldTypeDescriptionUnitsDefault
elec_aluminum_rateFloat64Electricity consumption per tonne of aluminum output$MWh_{elec}/t_{Al}$0.0
alumina_aluminum_rateFloat64Alumina consumption per tonne of aluminum output$t_{Al_2O_3}/t_{Al}$0.0
graphite_aluminum_rateFloat64Graphite consumption per tonne of aluminum output$t_{graphite}/t_{Al}$0.0
graphite_emissions_rateFloat64CO₂ emissions per tonne of graphite input$t_{CO_2}/t_{graphite}$0.0

General Attributes

FieldTypeValuesDefaultDescription
typeStringAny Macro commodity type matching the commodity of the edgeRequiredCommodity of the edge. E.g. "Electricity".
start_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the starting vertex of the edge. The node must be present in the nodes.json file. E.g. "elec_node_1".
end_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the ending vertex of the edge. The node must be present in the nodes.json file. E.g. "aluminum_node_1".
availabilityDictAvailability file path and headerEmptyPath to the availability file and column name for the availability time series to link to the edge. E.g. {"timeseries": {"path": "assets/availability.csv", "header": "AluminumSmelting"}}.
has_capacityBoolBoolfalseWhether capacity variables are created for the edge.
integer_decisionsBoolBoolfalseWhether capacity variables are integers.
unidirectionalBoolBoolfalseWhether the edge is unidirectional.
Asset expansion

As a modeling decision, only the Aluminum edge is allowed to expand. Therefore, both the has_capacity and constraints attributes can only be set for that edge. For all other edges, these attributes are pre-set to false and an empty list, respectively, to ensure the correct modeling of the asset.

Unit Commitment

The aluminum_edge can optionally support unit commitment constraints. If uc is set to true in the edge data, the edge will be created as an EdgeWithUC type, and unit commitment constraints (MinUpTimeConstraint, MinDownTimeConstraint) will be automatically applied.

Investment Parameters

FieldTypeDescriptionUnitsDefault
can_retireBooleanWhether capacity can be retired-true
can_expandBooleanWhether capacity can be expanded-true
existing_capacityFloat64Initial installed capacityt Al0.0

Economic Parameters

FieldTypeDescriptionUnitsDefault
investment_costFloat64CAPEX per unit capacity$/MW0.0
fixed_om_costFloat64Fixed O&M costs$/MW-yr0.0
variable_om_costFloat64Variable O&M costs$/MWh Al0.0
startup_costFloat64Startup cost$0.0

Constraints Configuration

Aluminum Smelting assets can have different constraints applied to them, and the user can configure them using the following fields:

FieldTypeDescription
transform_constraintsDict{String,Bool}List of constraints applied to the transformation component.
output_constraintsDict{String,Bool}List of constraints applied to the output edge component.

For example, if the user wants to apply the BalanceConstraint to the transformation component and the CapacityConstraint to the output edge, the constraints fields should be set as follows:

{
    "transform_constraints": {
        "BalanceConstraint": true
    },
    "edges":{
        "aluminum_edge": {
            "constraints": {
                "CapacityConstraint": true
            }
        }
    }
}

Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of an Aluminum Smelting asset.

Default constraints

To simplify the input file and the asset configuration, the following constraints are applied to the Aluminum Smelting asset by default:

Types - Asset Structure

The Aluminum Smelting asset is defined as follows:

struct AluminumSmelting <: AbstractAsset
    id::AssetId
    aluminumsmelting_transform::Transformation
    elec_edge::Edge{<:Electricity}
    alumina_edge::Edge{<:Alumina}
    graphite_edge::Edge{<:Graphite}
    aluminum_edge::Union{Edge{<:Aluminum},EdgeWithUC{<:Aluminum}}
    co2_edge::Edge{<:CO2}
end

Constructors

Factory constructor

make(asset_type::Type{AluminumSmelting}, data::AbstractDict{Symbol,Any}, system::System)
FieldTypeDescription
asset_typeType{AluminumSmelting}Macro type of the asset
dataAbstractDict{Symbol,Any}Dictionary containing the input data for the asset
systemSystemSystem to which the asset belongs

Stoichiometry balance data

aluminumsmelting_transform.balance_data = Dict(
    :elec_to_aluminum => Dict(
        elec_edge.id => 1.0,
        alumina_edge.id => 0.0,
        graphite_edge.id => 0.0,
        aluminum_edge.id => get(transform_data, :elec_aluminum_rate, 0.0)
        ),
        :alumina_to_aluminum => Dict(
            elec_edge.id => 0.0,
            alumina_edge.id => 1.0,
            graphite_edge.id => 0.0,
            aluminum_edge.id => get(transform_data, :alumina_aluminum_rate, 0.0)
        ),
        :graphite_to_aluminum => Dict(
            elec_edge.id => 0.0,
            alumina_edge.id => 0.0,
            graphite_edge.id => 1.0,
            aluminum_edge.id => get(transform_data, :graphite_aluminum_rate, 0.0)
        ),
        :emissions => Dict(
            graphite_edge.id => get(transform_data, :graphite_emissions_rate, 0.0),
        co2_edge.id => 1.0
    )
)
Dictionary keys must match

In the code above, each get function call looks up a parameter in the transform_data dictionary using a symbolic key such as :elec_aluminum_rate or :graphite_emissions_rate. These keys must exactly match the corresponding field names in your input asset .json or .csv files. Mismatched key names between the constructor file and the asset input will result in missing or incorrect parameter values (defaulting to the values shown above).

Examples

This example illustrates a basic Aluminum Smelting configuration in JSON format:

{
    "AluminumSmelting": [
        {
            "type": "AluminumSmelting",
            "global_data":{
                "nodes": {},
                "transforms": {
                    "timedata": "Aluminum"
                },
                "edges":{
                    "aluminum_edge": {
                        "commodity": "Aluminum",
                        "unidirectional": true,
                        "has_capacity": true,
                        "can_retire": true,
                        "can_expand": true,
                        "integer_decisions": false
                    },
                    "elec_edge": {
                        "commodity": "Electricity",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "alumina_edge": {
                        "commodity": "Alumina",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "graphite_edge": {
                        "commodity": "Graphite",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "co2_edge": {
                        "commodity": "CO2",
                        "unidirectional": true,
                        "has_capacity": false,
                        "end_vertex": "co2_sink"
                    }
                }
            },
            "instance_data":[
                {
                    "id": "aluminum_smelting_1",
                    "transforms":{
                        "elec_aluminum_rate": 13.3,
                        "alumina_aluminum_rate": 1.93,
                        "graphite_aluminum_rate": 0.45,
                        "graphite_emissions_rate": 3.67
                    },
                    "edges":{
                        "aluminum_edge": {
                            "end_vertex": "aluminum_node_1",
                            "existing_capacity": 0.0,
                            "investment_cost": 12000000,
                            "fixed_om_cost": 2040000,
                            "variable_om_cost": 62,
                            "startup_cost": 1469798
                        },
                        "elec_edge": {
                            "start_vertex": "elec_node_1"
                        },
                        "alumina_edge": {
                            "start_vertex": "alumina_node_1"
                        },
                        "graphite_edge": {
                            "start_vertex": "graphite_node_1"
                        },
                        "co2_edge": {
                            "end_vertex": "co2_sink"
                        }
                    }
                }
            ]
        }
    ]
}

The following related assets are also available in Macro, though they are typically of secondary importance compared to Aluminum Smelting:

  • Aluminum Refining: A facility that transforms electricity and aluminum scrap into refined aluminum. This process is less energy-intensive than smelting (approximately 2.0 MWh per tonne of aluminum).

  • Alumina Plant: A facility that produces alumina from bauxite using electricity and fuel. This process has relatively low electricity consumption (approximately 0.15 MWh per tonne of alumina) and is typically not the primary focus in energy system modeling.

See Also

  • Edges - Components that connect Vertices and carry flows
  • Transformations - Processes that transform flows of several Commodities
  • Nodes - Network nodes that allow for import and export of commodities
  • Vertices - Network nodes that edges connect
  • Assets - Higher-level components made from edges, nodes, storage, and transformations
  • Commodities - Types of resources stored by Commodities
  • Time Data - Temporal modeling framework
  • Constraints - Additional constraints for Storage and other components