Aluminum Refining

Contents

Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples

Overview

In Macro, the Aluminum Refining asset represents a facility that transforms electricity and aluminum scrap into refined aluminum. This process is less energy-intensive than primary aluminum smelting, consuming approximately 2.0 MWh per tonne of aluminum (compared to 13.3 MWh per tonne for smelting). The process uses aluminum scrap as a feedstock and produces refined aluminum with no direct CO₂ emissions.

Secondary Importance

Aluminum Refining is typically of secondary importance in energy system modeling compared to Aluminum Smelting, which is the primary energy-intensive process in aluminum production.

These assets are defined using either JSON or CSV input files placed in the assets directory, typically named with descriptive identifiers like aluminum_refining.json or aluminum_refining.csv.

Asset Structure

An Aluminum Refining plant is made of the following components:

  • 1 Transformation component, representing the aluminum refining process.
  • 3 Edge components:
    • 1 incoming Electricity Edge, representing electricity consumption (approximately 2.0 MWh per tonne of aluminum).
    • 1 incoming AluminumScrap Edge, representing aluminum scrap supply (approximately 1.05 tonnes per tonne of aluminum, including 5% loss).
    • 1 outgoing Aluminum Edge, representing refined aluminum production.

Here is a graphical representation of the Aluminum Refining asset:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#D1EBDE' }}}%% flowchart BT subgraph AluminumRefining direction BT A1(("**Electricity**")) e1@-->B{{"**AluminumRefining**"}} A2(("**AluminumScrap**")) e2@-->B{{"**AluminumRefining**"}} B{{"**AluminumRefining**"}} e3@-->C1(("**Aluminum**")) e1@{ animate: true } e2@{ animate: true } e3@{ animate: true } end style A1 font-size:15px,r:46px,fill:#FFD700,stroke:black,color:black,stroke-dasharray: 3,5; style A2 font-size:15px,r:46px,fill:#95A5A6,stroke:black,color:black,stroke-dasharray: 3,5; style B fill:white,stroke:black,color:black; style C1 font-size:15px,r:46px,fill:#566573,stroke:black,color:black,stroke-dasharray: 3,5; linkStyle 0 stroke:#FFD700, stroke-width: 2px; linkStyle 1 stroke:#95A5A6, stroke-width: 2px; linkStyle 2 stroke:#566573, stroke-width: 2px;

Flow Equations

The Aluminum Refining asset follows these stoichiometric relationships:

\[\begin{aligned} \phi_{elec} &= \phi_{aluminum} \cdot \epsilon_{elec\_aluminum\_rate} \\ \phi_{aluminumscrap} &= \phi_{aluminum} \cdot \epsilon_{aluminumscrap\_aluminum\_rate} \\ \end{aligned}\]

Where:

  • $\phi$ represents the flow of each commodity
  • $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.
  • Note: Aluminum and AluminumScrap flows are in tonnes, while Electricity is in MWh.

Input File (Standard Format)

The easiest way to include an Aluminum Refining asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.

your_case/
├── assets/
│   ├── aluminum_refining.json    # or aluminum_refining.csv
│   ├── other_assets.json
│   └── ...
├── system/
├── settings/
└── ...

This file can either be created manually, or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model. An example of an input JSON file is shown in the Examples section.

The following tables outline the attributes that can be set for an Aluminum Refining asset.

Transform Attributes

Essential Attributes

FieldTypeDescription
TypeStringAsset type identifier: "AluminumRefining"
idStringUnique identifier for the asset instance
locationStringGeographic location/node identifier
timedataStringTime resolution for the time series data linked to the transformation

Conversion Process Parameters

FieldTypeDescriptionUnitsDefault
elec_aluminum_rateFloat64Electricity consumption per tonne of aluminum output$MWh_{elec}/t_{Al}$0.0
aluminumscrap_aluminum_rateFloat64Aluminum scrap consumption per tonne of aluminum output (includes 5% loss)$t_{scrap}/t_{Al}$0.0

General Attributes

FieldTypeValuesDefaultDescription
typeStringAny Macro commodity type matching the commodity of the edgeRequiredCommodity of the edge. E.g. "Electricity".
start_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the starting vertex of the edge. The node must be present in the nodes.json file. E.g. "elec_node_1".
end_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the ending vertex of the edge. The node must be present in the nodes.json file. E.g. "aluminum_node_1".
availabilityDictAvailability file path and headerEmptyPath to the availability file and column name for the availability time series to link to the edge. E.g. {"timeseries": {"path": "assets/availability.csv", "header": "AluminumRefining"}}.
has_capacityBoolBoolfalseWhether capacity variables are created for the edge.
integer_decisionsBoolBoolfalseWhether capacity variables are integers.
unidirectionalBoolBoolfalseWhether the edge is unidirectional.
Asset expansion

As a modeling decision, only the Aluminum edge is allowed to expand. Therefore, both the has_capacity and constraints attributes can only be set for that edge. For all other edges, these attributes are pre-set to false and an empty list, respectively, to ensure the correct modeling of the asset.

Investment Parameters

FieldTypeDescriptionUnitsDefault
can_retireBooleanWhether capacity can be retired-true
can_expandBooleanWhether capacity can be expanded-true
existing_capacityFloat64Initial installed capacityt Al0.0

Economic Parameters

FieldTypeDescriptionUnitsDefault
investment_costFloat64CAPEX per unit capacity$/MW0.0
fixed_om_costFloat64Fixed O&M costs$/MW-yr0.0
variable_om_costFloat64Variable O&M costs$/MWh Al0.0

Constraints Configuration

Aluminum Refining assets can have different constraints applied to them, and the user can configure them using the following fields:

FieldTypeDescription
transform_constraintsDict{String,Bool}List of constraints applied to the transformation component.
output_constraintsDict{String,Bool}List of constraints applied to the output edge component.

For example, if the user wants to apply the BalanceConstraint to the transformation component and the CapacityConstraint to the output edge, the constraints fields should be set as follows:

{
    "transform_constraints": {
        "BalanceConstraint": true
    },
    "edges":{
        "aluminum_edge": {
            "constraints": {
                "CapacityConstraint": true
            }
        }
    }
}

Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of an Aluminum Refining asset.

Default constraints

To simplify the input file and the asset configuration, the following constraints are applied to the Aluminum Refining asset by default:

Types - Asset Structure

The Aluminum Refining asset is defined as follows:

struct AluminumRefining <: AbstractAsset
    id::AssetId
    aluminum_transform::Transformation
    elec_edge::Edge{<:Electricity}
    aluminumscrap_edge::Edge{<:AluminumScrap}
    aluminum_edge::Edge{<:Aluminum}
end

Constructors

Factory constructor

make(asset_type::Type{AluminumRefining}, data::AbstractDict{Symbol,Any}, system::System)
FieldTypeDescription
asset_typeType{AluminumRefining}Macro type of the asset
dataAbstractDict{Symbol,Any}Dictionary containing the input data for the asset
systemSystemSystem to which the asset belongs

Stoichiometry balance data

aluminumrefining_transform.balance_data = Dict(
    :elec_to_aluminum => Dict(
        elec_edge.id => 1.0,
        aluminumscrap_edge.id => 0.0,
        aluminum_edge.id => get(transform_data, :elec_aluminum_rate, 0.0)
        ),
        :aluminumscrap_to_aluminum => Dict(
            elec_edge.id => 0.0,
            aluminumscrap_edge.id => 1.0,
            aluminum_edge.id => get(transform_data, :aluminumscrap_aluminum_rate, 0.0)
    )
)
Dictionary keys must match

In the code above, each get function call looks up a parameter in the transform_data dictionary using a symbolic key such as :elec_aluminum_rate or :aluminumscrap_aluminum_rate. These keys must exactly match the corresponding field names in your input asset .json or .csv files. Mismatched key names between the constructor file and the asset input will result in missing or incorrect parameter values (defaulting to the values shown above).

Examples

This example illustrates a basic Aluminum Refining configuration in JSON format:

{
    "AluminumRefining": [
        {
            "type": "AluminumRefining",
            "global_data":{
                "nodes": {},
                "transforms": {
                    "timedata": "Aluminum"
                },
                "edges":{
                    "aluminum_edge": {
                        "commodity": "Aluminum",
                        "unidirectional": true,
                        "has_capacity": true,
                        "can_retire": true,
                        "can_expand": true,
                        "integer_decisions": false
                    },
                    "elec_edge": {
                        "commodity": "Electricity",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "aluminumscrap_edge": {
                        "commodity": "AluminumScrap",
                        "unidirectional": true,
                        "has_capacity": false
                    }
                }
            },
            "instance_data":[
                {
                    "id": "aluminum_refining_1",
                    "transforms":{
                        "elec_aluminum_rate": 2.0,
                        "aluminumscrap_aluminum_rate": 1.05
                    },
                    "edges":{
                        "aluminum_edge": {
                            "end_vertex": "aluminum_node_1",
                            "existing_capacity": 0.0,
                            "investment_cost": 2400000,
                            "fixed_om_cost": 420000,
                            "variable_om_cost": 123
                        },
                        "elec_edge": {
                            "start_vertex": "elec_node_1"
                        },
                        "aluminumscrap_edge": {
                            "start_vertex": "aluminumscrap_node_1"
                        }
                    }
                }
            ]
        }
    ]
}

See Also

  • Edges - Components that connect Vertices and carry flows
  • Transformations - Processes that transform flows of several Commodities
  • Nodes - Network nodes that allow for import and export of commodities
  • Vertices - Network nodes that edges connect
  • Assets - Higher-level components made from edges, nodes, storage, and transformations
  • Commodities - Types of resources stored by Commodities
  • Time Data - Temporal modeling framework
  • Constraints - Additional constraints for Storage and other components
  • Aluminum Smelting - Primary energy-intensive aluminum production process
  • Alumina Plant - Alumina production from bauxite