Alumina Plant

Contents

Overview | Asset Structure | Flow Equations | Input File (Standard Format) | Types - Asset Structure | Constructors | Examples

Overview

In Macro, the Alumina Plant asset represents a facility that produces alumina from bauxite using the Bayer process. This process consumes electricity, fuel (typically natural gas), and bauxite as feedstocks, and produces alumina and CO₂ emissions. The process has relatively low electricity consumption (approximately 0.15 MWh per tonne of alumina) compared to aluminum smelting.

Secondary Importance

Alumina Plant is typically of secondary importance in energy system modeling compared to Aluminum Smelting, which is the primary energy-intensive process in aluminum production. The alumina plant's electricity consumption is relatively low, and the process is primarily thermal rather than electrical.

These assets are defined using either JSON or CSV input files placed in the assets directory, typically named with descriptive identifiers like alumina_plant.json or alumina_plant.csv.

Asset Structure

An Alumina Plant is made of the following components:

  • 1 Transformation component, representing the alumina production process.
  • 5 Edge components:
    • 1 incoming Electricity Edge, representing electricity consumption (approximately 0.15 MWh per tonne of alumina).
    • 1 incoming Bauxite Edge, representing bauxite supply (approximately 2.4 tonnes per tonne of alumina).
    • 1 incoming Fuel Edge, representing fuel supply (typically natural gas, approximately 2.917 MWh per tonne of alumina).
    • 1 outgoing Alumina Edge, representing alumina production.
    • 1 outgoing CO₂ Edge, representing CO₂ emissions from fuel consumption.

Here is a graphical representation of the Alumina Plant asset:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#D1EBDE' }}}%% flowchart BT subgraph AluminaPlant direction BT A1(("**Electricity**")) e1@-->B{{"**AluminaPlant**"}} A2(("**Bauxite**")) e2@-->B{{"**AluminaPlant**"}} A3(("**NaturalGas**")) e3@-->B{{"**AluminaPlant**"}} B{{"**AluminaPlant**"}} e4@-->C1(("**Alumina**")) B{{"**AluminaPlant**"}} e5@-->C2(("**CO2**")) e1@{ animate: true } e2@{ animate: true } e3@{ animate: true } e4@{ animate: true } e5@{ animate: true } end style A1 font-size:15px,r:46px,fill:#FFD700,stroke:black,color:black,stroke-dasharray: 3,5; style A2 font-size:15px,r:46px,fill:#A52A2A,stroke:black,color:black,stroke-dasharray: 3,5; style A3 font-size:15px,r:46px,fill:#005F6A,stroke:black,color:black,stroke-dasharray: 3,5; style B fill:white,stroke:black,color:black; style C1 font-size:15px,r:46px,fill:#3498DB,stroke:black,color:black,stroke-dasharray: 3,5; style C2 font-size:15px,r:46px,fill:lightgray,stroke:black,color:black,stroke-dasharray: 3,5; linkStyle 0 stroke:#FFD700, stroke-width: 2px; linkStyle 1 stroke:#A52A2A, stroke-width: 2px; linkStyle 2 stroke:#005F6A, stroke-width: 2px; linkStyle 3 stroke:#3498DB, stroke-width: 2px; linkStyle 4 stroke:lightgray, stroke-width: 2px;

Flow Equations

The Alumina Plant asset follows these stoichiometric relationships:

\[\begin{aligned} \phi_{elec} &= \phi_{alumina} \cdot \epsilon_{elec\_alumina\_rate} \\ \phi_{bauxite} &= \phi_{alumina} \cdot \epsilon_{bauxite\_alumina\_rate} \\ \phi_{fuel} &= \phi_{alumina} \cdot \epsilon_{fuel\_alumina\_rate} \\ \phi_{co2} &= \phi_{fuel} \cdot \epsilon_{fuel\_emissions\_rate} \\ \end{aligned}\]

Where:

  • $\phi$ represents the flow of each commodity
  • $\epsilon$ represents the stoichiometric coefficients defined in the Conversion Process Parameters section.
  • Note: Alumina and Bauxite flows are in tonnes, while Electricity and Fuel are in MWh.

Input File (Standard Format)

The easiest way to include an Alumina Plant asset in a model is to create a new file (either JSON or CSV) and place it in the assets directory together with the other assets.

your_case/
├── assets/
│   ├── alumina_plant.json    # or alumina_plant.csv
│   ├── other_assets.json
│   └── ...
├── system/
├── settings/
└── ...

This file can either be created manually, or using the template_asset function, as shown in the Adding an Asset to a System section of the User Guide. The file will be automatically loaded when you run your Macro model. An example of an input JSON file is shown in the Examples section.

The following tables outline the attributes that can be set for an Alumina Plant asset.

Transform Attributes

Essential Attributes

FieldTypeDescription
TypeStringAsset type identifier: "AluminaPlant"
idStringUnique identifier for the asset instance
locationStringGeographic location/node identifier
timedataStringTime resolution for the time series data linked to the transformation

Conversion Process Parameters

FieldTypeDescriptionUnitsDefault
elec_alumina_rateFloat64Electricity consumption per tonne of alumina output$MWh_{elec}/t_{Al_2O_3}$0.0
bauxite_alumina_rateFloat64Bauxite consumption per tonne of alumina output$t_{bauxite}/t_{Al_2O_3}$0.0
fuel_alumina_rateFloat64Fuel consumption per tonne of alumina output$MWh_{fuel}/t_{Al_2O_3}$0.0
fuel_emissions_rateFloat64CO₂ emissions per MWh of fuel input$t_{CO_2}/MWh_{fuel}$0.0

General Attributes

FieldTypeValuesDefaultDescription
typeStringAny Macro commodity type matching the commodity of the edgeRequiredCommodity of the edge. E.g. "Electricity".
start_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the starting vertex of the edge. The node must be present in the nodes.json file. E.g. "elec_node_1".
end_vertexStringAny node id present in the system matching the commodity of the edgeRequiredID of the ending vertex of the edge. The node must be present in the nodes.json file. E.g. "alumina_node_1".
availabilityDictAvailability file path and headerEmptyPath to the availability file and column name for the availability time series to link to the edge. E.g. {"timeseries": {"path": "assets/availability.csv", "header": "AluminaPlant"}}.
has_capacityBoolBoolfalseWhether capacity variables are created for the edge.
integer_decisionsBoolBoolfalseWhether capacity variables are integers.
unidirectionalBoolBoolfalseWhether the edge is unidirectional.
Asset expansion

As a modeling decision, only the Alumina edge is allowed to expand. Therefore, both the has_capacity and constraints attributes can only be set for that edge. For all other edges, these attributes are pre-set to false and an empty list, respectively, to ensure the correct modeling of the asset.

Unit Commitment

The elec_edge can optionally support unit commitment constraints. If uc is set to true in the edge data, the edge will be created as an EdgeWithUC type, and unit commitment constraints (MinUpTimeConstraint, MinDownTimeConstraint) will be automatically applied.

Investment Parameters

FieldTypeDescriptionUnitsDefault
can_retireBooleanWhether capacity can be retired-true
can_expandBooleanWhether capacity can be expanded-true
existing_capacityFloat64Initial installed capacityt Al₂O₃0.0

Economic Parameters

FieldTypeDescriptionUnitsDefault
investment_costFloat64CAPEX per unit capacity$/MW0.0
fixed_om_costFloat64Fixed O&M costs$/MW-yr0.0
variable_om_costFloat64Variable O&M costs$/MWh Al₂O₃0.0

Constraints Configuration

Alumina Plant assets can have different constraints applied to them, and the user can configure them using the following fields:

FieldTypeDescription
transform_constraintsDict{String,Bool}List of constraints applied to the transformation component.
output_constraintsDict{String,Bool}List of constraints applied to the output edge component.

For example, if the user wants to apply the BalanceConstraint to the transformation component and the CapacityConstraint to the output edge, the constraints fields should be set as follows:

{
    "transform_constraints": {
        "BalanceConstraint": true
    },
    "edges":{
        "alumina_edge": {
            "constraints": {
                "CapacityConstraint": true
            }
        }
    }
}

Users can refer to the Adding Asset Constraints to a System section of the User Guide for a list of all the constraints that can be applied to the different components of an Alumina Plant asset.

Default constraints

To simplify the input file and the asset configuration, the following constraints are applied to the Alumina Plant asset by default:

Types - Asset Structure

The Alumina Plant asset is defined as follows:

struct AluminaPlant{T} <: AbstractAsset
    id::AssetId
    aluminaplant_transform::Transformation
    elec_edge::Union{Edge{<:Electricity},EdgeWithUC{<:Electricity}}
    alumina_edge::Edge{<:Alumina}
    bauxite_edge::Edge{<:Bauxite}
    fuel_edge::Edge{<:T}
    co2_edge::Edge{<:CO2}
end

Where T is a generic type parameter that can be any Commodity type (typically NaturalGas).

Constructors

Factory constructor

make(asset_type::Type{AluminaPlant}, data::AbstractDict{Symbol,Any}, system::System)
FieldTypeDescription
asset_typeType{AluminaPlant}Macro type of the asset
dataAbstractDict{Symbol,Any}Dictionary containing the input data for the asset
systemSystemSystem to which the asset belongs

Stoichiometry balance data

aluminaplant_transform.balance_data = Dict(
    :elec_to_alumina => Dict(
        elec_edge.id => 1.0,
        fuel_edge.id => 0.0,
        bauxite_edge.id => 0.0,
        alumina_edge.id => get(transform_data, :elec_alumina_rate, 0.0)
        ),
        :bauxite_to_alumina => Dict(
            elec_edge.id => 0.0,
            fuel_edge.id => 0.0,
            bauxite_edge.id => 1.0,
            alumina_edge.id => get(transform_data, :bauxite_alumina_rate, 0.0)
        ),
        :fuel_to_alumina => Dict(
            elec_edge.id => 0.0,
            fuel_edge.id => 1.0,
            bauxite_edge.id => 0.0,
            alumina_edge.id => get(transform_data, :fuel_alumina_rate, 0.0)
        ),
        :emissions => Dict(
            fuel_edge.id => get(transform_data, :fuel_emissions_rate, 0.0),
        co2_edge.id => 1.0
    )
)
Dictionary keys must match

In the code above, each get function call looks up a parameter in the transform_data dictionary using a symbolic key such as :elec_alumina_rate or :fuel_emissions_rate. These keys must exactly match the corresponding field names in your input asset .json or .csv files. Mismatched key names between the constructor file and the asset input will result in missing or incorrect parameter values (defaulting to the values shown above).

Examples

This example illustrates a basic Alumina Plant configuration in JSON format:

{
    "AluminaPlant": [
        {
            "type": "AluminaPlant",
            "global_data":{
                "nodes": {},
                "transforms": {
                    "timedata": "Alumina"
                },
                "edges":{
                    "alumina_edge": {
                        "commodity": "Alumina",
                        "unidirectional": true,
                        "has_capacity": true,
                        "can_retire": true,
                        "can_expand": true,
                        "integer_decisions": false
                    },
                    "elec_edge": {
                        "commodity": "Electricity",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "bauxite_edge": {
                        "commodity": "Bauxite",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "fuel_edge": {
                        "commodity": "NaturalGas",
                        "unidirectional": true,
                        "has_capacity": false
                    },
                    "co2_edge": {
                        "commodity": "CO2",
                        "unidirectional": true,
                        "has_capacity": false,
                        "end_vertex": "co2_sink"
                    }
                }
            },
            "instance_data":[
                {
                    "id": "alumina_plant_1",
                    "transforms":{
                        "elec_alumina_rate": 0.15,
                        "bauxite_alumina_rate": 2.4,
                        "fuel_alumina_rate": 2.917,
                        "fuel_emissions_rate": 0.181048235160161
                    },
                    "edges":{
                        "alumina_edge": {
                            "end_vertex": "alumina_node_1",
                            "existing_capacity": 0.0,
                            "investment_cost": 3600000,
                            "fixed_om_cost": 613200,
                            "variable_om_cost": 30
                        },
                        "elec_edge": {
                            "start_vertex": "elec_node_1"
                        },
                        "bauxite_edge": {
                            "start_vertex": "bauxite_node_1"
                        },
                        "fuel_edge": {
                            "start_vertex": "natgas_node_1"
                        },
                        "co2_edge": {
                            "end_vertex": "co2_sink"
                        }
                    }
                }
            ]
        }
    ]
}

See Also

  • Edges - Components that connect Vertices and carry flows
  • Transformations - Processes that transform flows of several Commodities
  • Nodes - Network nodes that allow for import and export of commodities
  • Vertices - Network nodes that edges connect
  • Assets - Higher-level components made from edges, nodes, storage, and transformations
  • Commodities - Types of resources stored by Commodities
  • Time Data - Temporal modeling framework
  • Constraints - Additional constraints for Storage and other components
  • Aluminum Smelting - Primary energy-intensive aluminum production process
  • Aluminum Refining - Aluminum refining from scrap